
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 24: Map Reduce

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 24 18 March 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Lecture 24 handout
•  Slides from MapReduce lecture in Stanford CS 345A course

— http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

•  Slides from COMP 422 lecture on MapReduce
— http://www.clear.rice.edu/comp422

COMP 322, Spring 2011 (V.Sarkar)	

3

Announcements"
•  HW5 submission deadline postponed to 5pm on Monday, March

21st

COMP 322, Spring 2011 (V.Sarkar)	

4

HW5: Review of Table 1 from Lecture 19"

COMP 322, Spring 2011 (V.Sarkar)	

5

HW5 Clarifications"
•  Clarification 1: You can ignore the possibility of queue overflow

in class IQueue.
•  Clarification 2: Remember to take AtomicInteger.get()

operations into account along with compareAndSet()
operations when considering serialization edges in Problem 3.

•  Clarification 3: A do-while loop in Java executes the loop body
at least once, and only exits the loop when the while condition
is false.

•  Clarification 4: Problem 1) asks for an expansion
of the compareAndSet() calls in accordance with Table 1 of the
Lecture 19 handout. The isolated statement should only
enclose the compareAndSet computation and nothing more.

COMP 322, Spring 2011 (V.Sarkar)	

6

Recap: map and reduce (fold) functions
in Scheme"

•  (map f (list x1 ...xn)) = (list (f x1)...(f xn))
— (map f L) takes two parameters as inputs, a unary function, f, and

a list, L, and returns a new list obtained by applying f to each
element in L.

— All applications of function f can be performed in parallel. If each
application of f takes O(1) constant time, then WORK = O(n) and
CPL = O(1).

•  (foldr g base (list x1 ...xn)) = (g x1 ...(g xn base))
— (foldr g base L) takes three parameters as inputs, a binary

function, g, a base (init) value, and a list, L. It returns a right-
associative reduced value obtained by applying g on elements of L.

— If we don’t know anything about function g, then we have to assume
that it must be applied sequentially as shown above.

— If g is associative, it can be computed using parallel reduction
algorithms with WORK = O(n) and CPL = O(log n).

— For today’s lecture, we will assume that all functions used for
reduce operations are both associative and commutative.

COMP 322, Spring 2011 (V.Sarkar)	

7

Sets of Key-Value Pairs"
•  Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi)

consists of a key, ki, and a value, vi.
— Assume that the key and value objects are immutable, and that

equality comparison is well defined on all key objects.

•  Map function f generates sets of intermediate key-value pairs,
f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}. The kj′ keys can be different
from ki key in the input of the map function.

•  Assume that a flatten operation is performed as a post-pass
after the map operations, so as to avoid dealing with a set of
sets.

•  Reduce operation groups together intermediate key-value pairs,
{(k′, vj′)} with the same k’, and generates a reduced key-value
pair, (k′,v′′), for each such k’, using reduce function g

COMP 322, Spring 2011 (V.Sarkar)	

8

MapReduce: The Map Step"

v k

k' v'

k' v'
map

v k

v k

…
k' v'

map

Input set of
key-value pairs

Flattened intermediate
set of key-value pairs

…

k' v' map

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

COMP 322, Spring 2011 (V.Sarkar)	

9

MapReduce: The Reduce Step"

k' v'

…

k' v'

k' v'

k' v'

Intermediate
key-value pairs

group

reduce

reduce
k' v''

v''

v''

…

k' v'

…

k' v'

k' v' v'

v' v'

Key-value groups
Output
key-value pairs

k'

k'

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

COMP 322, Spring 2011 (V.Sarkar)	

10

WordCount example (Listing 1)"
1.  Input: set of words
2.  Output: set of (word,count) pairs
3.  Algorithm:
4.  a) For each input word W, emit (W, 1) as a key-value pair

(map step).
5.  b) Group together all key-value pairs with the same key

(reduce step).
6.  c) Perform a sum reduction on all values with the same key

(reduce step).
•  All map operations in step a) (line 4) can execute in parallel

with only local data accesses
•  Step b) (line 5) can involve a major reshuffle of data as all

key-value pairs with the same key are grouped together.
•  Step c) (line 6) performs a standard reduction algorithm for all

values with the same key, and in parallel for different keys.

COMP 322, Spring 2011 (V.Sarkar)	

11

Motivation: Large Scale Data
Processing"

•  Want to process terabytes of raw data
— documents found by a web crawl
— web request logs

•  Produce various kinds of derived data
— inverted indices

–  e.g. mapping from words to locations in documents
— various representations of graph structure of documents
— summaries of number of pages crawled per host
— most frequent queries in a given day
— ...

•  Input data is large
•  Need to parallelize computation so it takes reasonable time

— need hundreds/thousands of CPUs

•  Need for fault tolerance

COMP 322, Spring 2011 (V.Sarkar)	

12

Example applications of MapReduce in
Data Center Clusters (Table 1)"

COMP 322, Spring 2011 (V.Sarkar)	

13

Overall schematic for MapReduce
framework on a data center cluster"

COMP 322, Spring 2011 (V.Sarkar)	

14

Execution Overview"

COMP 322, Spring 2011 (V.Sarkar)	

15

Execution Overview Details"
1.  Initiation — the MapReduce library the splits input files into M

pieces (typically 16-64 MB per piece), and starts up program on
a cluster with 1 master and W workers

2. Master assignment — the Master node assigns M map tasks and R
reduce tasks to the workers. Typical values are M = 200,000 and
R = 5,000 for W = 2,000.
— The master attempts to assign tasks to workers that are located

close to desired input data (locality management).
3.  Map task — a worker assigned a map task parses key-value pairs

from input data, invokes the map function on each pair, and
produces intermediate key-value pairs.

4.  Partition — the intermediate key-value pairs are partitioned into
R regions for R reduce tasks.

5.  Group — each worker uses Remote Procedure Calls (RPC) to read
intermediate data from remote disks, after which it sorts its
set of pairs by key.

6.  Reduce — the worker iterates over sorted intermediate data,
calls reduce, and appends output to final output file

7.  Completion — when all is complete, user program is notified

COMP 322, Spring 2011 (V.Sarkar)	

16

Full “Word Count” Example: Main Program"
#include "mapreduce/mapreduce.h""

int main(int argc, char** argv) {"
 ParseCommandLineFlags(argc, argv);"
 MapReduceSpecification spec;"

 // Store list of input files into "spec""
 for (int i = 1; i < argc; i++) {"
 MapReduceInput* input = spec.add_input();"
 input->set_format("text");"
 input->set_filepattern(argv[i]);"
 input->set_mapper_class("WordCounter");"
 }"
 // Specify the output files:"
 // /gfs/test/freq-00000-of-00100"
 // /gfs/test/freq-00001-of-00100"
 // ..."
 MapReduceOutput* out = spec.output();"
 out->set_filebase("/gfs/test/freq");"
 out->set_num_tasks(100);"
 out->set_format("text");"
 out->set_reducer_class("Adder");"

 // Optional: do partial sums within map"
 // tasks to save network bandwidth"
 out->set_combiner_class("Adder");"

 // Tuning parameters: use at most 2000"
 // machines and 100 MB memory per task"
 spec.set_machines(2000);"
 spec.set_map_megabytes(100);"
 spec.set_reduce_megabytes(100);"

 // Now run it"
 MapReduceResult result;"
 if (!MapReduce(spec, &result)) abort();"

 // Done: 'result' structure contains info"
 // about counters, time taken, number of"
 // machines used, etc."

 return 0;"
}"

COMP 322, Spring 2011 (V.Sarkar)	

17

Full “Word Count” Example: Map"
#include "mapreduce/mapreduce.h""

class WordCounter : public Mapper {"
public:"
 virtual void Map(const MapInput& input) {"
 const string& text = input.value();"
 const int n = text.size();"
 for (int i = 0; i < n;) {"
 // Skip past leading whitespace"
 while ((i < n) && isspace(text[i])) i++;"
 // Find word end"
 int start = i;"
 while ((i < n) && !isspace(text[i])) i++;"
 if (start < i) Emit(text.substr(start,i-
start),"1");"
 }"
 }"
};"
REGISTER_MAPPER(WordCounter);"

COMP 322, Spring 2011 (V.Sarkar)	

18

Full “Word Count” Example: Reduce"

#include "mapreduce/mapreduce.h""

class Adder : public Reducer {"
 virtual void Reduce(ReduceInput* input) {"
 // Iterate over all entries with the"
 // same key and add the values"
 int64 value = 0;"
 while (! input->done()) {"
 value += StringToInt(input->value());"
 input->NextValue();"
 }"
 // Emit sum for input->key()"
 Emit(IntToString(value));"
 }"
};"
REGISTER_REDUCER(Adder);"

