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Acknowledgments for Todayʼs Lecture"
•  Lecture 24 handout 
•  Slides from MapReduce lecture in Stanford CS 345A course 

— http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt 

•  Slides from COMP 422 lecture on MapReduce 
— http://www.clear.rice.edu/comp422 
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Announcements"
•  HW5 submission deadline postponed to 5pm on Monday, March 

21st 
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HW5: Review of Table 1 from Lecture 19"
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HW5 Clarifications"
•  Clarification 1: You can ignore the possibility of queue overflow 

in class IQueue. 
•  Clarification 2: Remember to take AtomicInteger.get() 

operations into account along with compareAndSet() 
operations when considering serialization edges in Problem 3. 

•  Clarification 3: A do-while loop in Java executes the loop body 
at least once, and only exits the loop when the while condition 
is false. 

•  Clarification 4: Problem 1) asks for an expansion 
of the compareAndSet() calls in accordance with Table 1 of the 
Lecture 19 handout.  The isolated statement should only 
enclose the compareAndSet computation and nothing more. 
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Recap: map and reduce (fold) functions 
in Scheme"

•  (map f (list x1 ...xn)) = (list (f x1)...(f xn)) 
— (map f L) takes two parameters as inputs, a unary function, f, and 

a list, L, and returns a new list obtained by applying f to each 
element in L.  

— All applications of function f can be performed in parallel. If each 
application of f takes O(1) constant time, then WORK = O(n) and 
CPL = O(1). 

•  (foldr g base (list x1 ...xn)) = (g x1 ...(g xn base)) 
— (foldr g base L) takes three parameters as inputs, a binary 

function, g, a base (init) value, and a list, L. It returns a right-
associative reduced value obtained by applying g on elements of L. 

— If we don’t know anything about function g, then we have to assume 
that it must be applied sequentially as shown above.  

— If g is associative, it can be computed using parallel reduction 
algorithms with WORK = O(n) and CPL = O(log n).  

— For today’s lecture, we will assume that all functions used for 
reduce operations are both associative and commutative. 
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Sets of Key-Value Pairs"
•  Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi) 

consists of a key, ki, and a value, vi.  
— Assume that the key and value objects are immutable, and that 

equality comparison is well defined on all key objects. 

•  Map function f generates sets of intermediate key-value pairs,  
f(ki,vi) = {(k1′ ,v1′ ),...(km′,vm′)}.  The kj′ keys can be different 
from ki key in the input of the map function. 

•  Assume that a flatten operation is performed as a post-pass 
after the map operations, so as to avoid dealing with a set of 
sets. 

•  Reduce operation groups together intermediate key-value pairs, 
{(k′, vj′ )} with the same k’, and generates a reduced key-value 
pair, (k′,v′′), for each such k’, using reduce function g 
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MapReduce: The Map Step"
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MapReduce: The Reduce Step"
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WordCount example (Listing 1)"
1.  Input: set of words 
2.  Output: set of (word,count) pairs 
3.  Algorithm: 
4.  a) For each input word W, emit (W, 1) as a key-value pair 

(map step). 
5.  b) Group together all key-value pairs with the same key 

(reduce step). 
6.  c) Perform a sum reduction on all values with the same key

(reduce step). 
•  All map operations in step a) (line 4) can execute in parallel 

with only local data accesses 
•  Step b) (line 5) can involve a major reshuffle of data as all 

key-value pairs with the same key are grouped together. 
•  Step c) (line 6) performs a standard reduction algorithm for all 

values with the same key, and in parallel for different keys. 
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Motivation: Large Scale Data 
Processing"

•  Want to process terabytes of raw data  
— documents found by a web crawl 
— web request logs 

•  Produce various kinds of derived data 
— inverted indices 

–  e.g. mapping from words to locations in documents 
— various representations of graph structure of documents 
— summaries of number of pages crawled per host 
— most frequent queries in a given day 
— ... 

•  Input data is large 
•  Need to parallelize computation so it takes reasonable time  

— need hundreds/thousands of CPUs 

•  Need for fault tolerance 
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Example applications of MapReduce in 
Data Center Clusters (Table 1)"
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Overall schematic for MapReduce 
framework on a data center cluster"
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Execution Overview"
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Execution Overview Details"
1.   Initiation — the MapReduce library the splits input files into M 

pieces (typically 16-64 MB per piece), and starts up program on 
a cluster with 1 master and W workers 

2. Master assignment — the Master node assigns M map tasks and R 
reduce tasks to the workers. Typical values are M = 200,000 and 
R = 5,000 for W = 2,000.  
— The master attempts to assign tasks to workers that are located 

close to desired input data (locality management). 
3.  Map task — a worker assigned a map task parses key-value pairs 

from input data, invokes the map function on each pair, and 
produces intermediate key-value pairs. 

4.  Partition — the intermediate key-value pairs are partitioned into 
R regions for R reduce tasks. 

5.  Group — each worker uses Remote Procedure Calls (RPC) to read 
intermediate data from remote disks, after which it sorts its 
set of pairs by key. 

6.  Reduce — the worker iterates over sorted intermediate data, 
calls reduce, and appends output to final output file 

7.  Completion — when all is complete, user program is notified 
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Full “Word Count” Example: Main Program"
#include "mapreduce/mapreduce.h""

int main(int argc, char** argv) {"
  ParseCommandLineFlags(argc, argv);"
  MapReduceSpecification spec;"

  // Store list of input files into "spec""
  for (int i = 1; i < argc; i++) {"
    MapReduceInput* input = spec.add_input();"
    input->set_format("text");"
    input->set_filepattern(argv[i]);"
    input->set_mapper_class("WordCounter");"
  }"
  // Specify the output files:"
  // /gfs/test/freq-00000-of-00100"
  // /gfs/test/freq-00001-of-00100"
  // ..."
  MapReduceOutput* out = spec.output();"
  out->set_filebase("/gfs/test/freq");"
  out->set_num_tasks(100);"
  out->set_format("text");"
  out->set_reducer_class("Adder");"

  // Optional: do partial sums within map"
  // tasks to save network bandwidth"
  out->set_combiner_class("Adder");"

  // Tuning parameters: use at most 2000"
  // machines and 100 MB memory per task"
  spec.set_machines(2000);"
  spec.set_map_megabytes(100);"
  spec.set_reduce_megabytes(100);"

  // Now run it"
  MapReduceResult result;"
  if (!MapReduce(spec, &result)) abort();"

  // Done: 'result' structure contains info"
  // about counters, time taken, number of"
  // machines used, etc."

  return 0;"
}"
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Full “Word Count” Example: Map"
#include "mapreduce/mapreduce.h""

class WordCounter : public Mapper {"
public:"
    virtual void Map(const MapInput& input) {"
        const string& text = input.value();"
        const int n = text.size();"
        for (int i = 0; i < n; ) {"
            // Skip past leading whitespace"
            while ((i < n) && isspace(text[i])) i++;"
           // Find word end"
           int start = i;"
           while ((i < n) && !isspace(text[i])) i++;"
           if (start < i) Emit(text.substr(start,i-
start),"1");"
        }"
     }"
};"
REGISTER_MAPPER(WordCounter);"
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Full “Word Count” Example: Reduce"

#include "mapreduce/mapreduce.h""

class Adder : public Reducer {"
  virtual void Reduce(ReduceInput* input) {"
    // Iterate over all entries with the"
    // same key and add the values"
    int64 value = 0;"
    while (! input->done()) {"
      value += StringToInt(input->value());"
      input->NextValue();"
    }"
    // Emit sum for input->key()"
    Emit(IntToString(value));"
  }"
};"
REGISTER_REDUCER(Adder);"


