COMP 322: Fundamentals of Parallel Programming

Lecture 3: Computation Graphs and Abstract Performance Metrics

Vivek Sarkar Department of Computer Science Rice University vsarkar@rice.edu

COMP 322 Lecture 3

14 January 2011

Acknowledgments for Today's Lecture

- Cilk lectures, <u>http://supertech.csail.mit.edu/cilk/</u>
- COMP 322 Lecture 3 handout

Computation Graphs for HJ Programs

- A Computation Graph (CG) is an abstract data structure that captures the dynamic execution of an HJ program
- The nodes in the CG are *steps* in the program's execution
 - -A step is a sequential subcomputation of a task that contains no continuation points
 - -When a worker starts executing a step, it can execute the entire step without interruption
 - -Steps need not be maximal i.e., it is acceptable to split a step into smaller steps if so desired

Example HJ Program Decomposed into Non-Maximal Steps (v1 ... v23)

// Task T1
v1; v2;
finish {
async {
// Task T2
v3;
finish {
<pre>async { v4; v5; } // Task T3</pre>
v6;
<pre>async { v7; v8; } // Task T4</pre>
v9;
} // finish
v10; v11;

```
// Task T2 (contd)
   async { v12; v13;
           v14; } // Task T5
   v15;
 } // end of task T2
 v16; v17; // back in Task T1
} // finish
v18; v19;
finish {
  async {
   // Task T6
   v20; v21; v22; }
v23:
```

COMP 322, Spring 2011 (V.Sarkar)

Computation Graph Edges

- CG edges represent ordering constraints
- There are three kinds of CG edges of interest in an HJ program with finish &async operations
 - 1.Continue edges define sequencing of steps within a task
 - 2.Spawn edges connect parent tasks to child async tasks
 - 3. Join edges connect async tasks to their Immediately Enclosing Finish (IEF) operations

Computation Graph for previous HJ Example

Observation: Step v16 can potentially execute in parallel with steps v3 ... v15

COMP 322, Spring 2011 (V.Sarkar)

Dependences in a Computation Graph

- Given edge (A,B) in a CG, node B can only start execution after node A has completed
- We say that node Y depends on node X if there is a path of directed edges from X to Y in the CG

 Also referred to as a "dependence from node X to node Y" or a "dependence from node Y on node X"
- Nodes X and Y can potentially execute in parallel if there is no dependence from X to Y or from Y to X
- Dependence is a transitive relation

 if B depends on A and C depends on B, then C must depend on A
- All computation graphs must be acyclic
 —It is not possible for a node to depend on itself
- Computation graphs are examples of directed acyclic graphs (dags)

Complexity Measures for Computation Graphs

Define

- time(N) = execution time of node N
- WORK(G) = sum of time(N), for all nodes N in CG G
 -WORK(G) is the total amount of work to be performed in G
- CPL(G) = length of a longest path in CG G, when adding up the execution times of all nodes in the path
 - -Such paths are called *critical paths*
 - -CPL(G) is the length of these paths (critical path length)

Example

• Assume time(N) = 1 for all nodes in this graph

WORK(G) = 18

Example (contd)

• Assume time(N) = 1 for all nodes in this graph

Lower Bounds on Execution Time

- t_{P} = execution time of computation graph on P processors
- Observations
 - $-t_1 = WORK(G)$
 - $-t_{\infty} = CPL(G)$
- Lower bounds
 - -Capacity bound: $t_P \ge WORK(G)/P$
 - -Critical path bound: $t_{\rho} \ge CPL(G)$
- Putting it together

 $-t_{P} \geq \max(WORK(G)/P, CPL(G))$

Greedy-Scheduling Theorem (Upper Bound)

Parallelism ("Ideal Speedup")

 \mathcal{T}_{ρ} depends on the schedule of computation graph nodes on the processors

→ Two different schedules can yield different values of T_P for the same P

For convenience, define parallelism (or ideal speedup) as the ratio, WORK(G)/CPL(G) = T_1/T_{∞}

Parallelism is independent of P, and only depends on the computation graph

HJ Abstract Performance Metrics

- Serial code sequence
 - Dynamic sequence of instructions with no parallel operations
- Calls to perf.addLocalOps()
 - -*Programmer* inserts calls of the form, perf.addLocalOps(N), inside a step to indicate execution of N application-specific abstract operations e.g., floating-point ops, stencil ops, data structure ops, etc.
 - -Multiple calls add to the execution time of the step
- -perf=true runtime option
 - —If an HJ program is executed with this option, abstract metrics are printed at end of program execution with WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)

