
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 33: GPGPU Programming with
CUDA

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 33 11 April 2011

COMP 322, Spring 2011 (V.Sarkar)	
2

Acknowledgments for Todayʼs Lecture"
•  Handout for Lecture 33
•  David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel

Processors: A Hands-on Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1st edition, 2010.

COMP 322, Spring 2011 (V.Sarkar)	
3

Announcements"
•  Homework 7 due by 5pm on Friday, April 22nd

— Send email to comp322-staff if you’re running into issues with
accessing SUG@R nodes, or anything else

COMP 322, Spring 2011 (V.Sarkar)	
4

•  Two major trends
1.  Increasing performance gap relative to mainstream CPUs

–  Calculation: 367 GFLOPS vs. 32 GFLOPS
–  Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s

2.  Availability of more general (non-graphics) programming interfaces

—  GPU in every PC and workstation – massive volume and potential impact

Why GPUs?"

COMP 322, Spring 2011 (V.Sarkar)	
5

What is GPGPU ?"
•  General Purpose computation using GPU

in applications other than 3D graphics
— GPU accelerates critical path of application

•  Data parallel algorithms leverage GPU attributes
— Large data arrays, streaming throughput
— Fine-grain SIMD parallelism
— Low-latency floating point (FP) computation

•  Applications – see GPGPU.org
— Game effects (FX) physics, image processing
— Physical modeling, computational engineering, matrix algebra,

convolution, correlation, sorting

COMP 322, Spring 2011 (V.Sarkar)	
6

Traditional vs. General Purpose GPUs"
•  Traditional graphics pipeline (Figure 10.3, Lin & Snyder)

•  General-purpose GPU (Figure 10.4(b), Lin & Snyder)

COMP 322, Spring 2011 (V.Sarkar)	
7

CPUs and GPUs have fundamentally
different design philosophies (Figure 1)"

DRAM

Co
Ca A A A A A A A A A A A A A A A A

Streaming Multiprocessor

Cache

ALU
Control

ALU

ALU

ALU

DRAM

Single CPU core Multiple GPU processors

COMP 322, Spring 2011 (V.Sarkar)	
8

Some applications that are well-
suited for GPU execution "

Application Description Source Kernel % time
H.264 SPEC ‘06 version, change in guess vector 34,811 194 35%

LBM SPEC ‘06 version, change to single precision
and print fewer reports 1,481 285 >99%

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99%

FEM Finite element modeling, simulation of 3D
graded materials 1,874 146 99%

RPES Rye Polynomial Equation Solver, quantum
chem, 2-electron repulsion 1,104 281 99%

PNS Petri Net simulation of a distributed system 322 160 >99%

SAXPY Single-precision implementation of saxpy,
used in Linpack’s Gaussian elim. routine 952 31 >99%

TRACF Two Point Angular Correlation Function 536 98 96%
FDTD Finite-Difference Time Domain analysis of

2D electromagnetic wave propagation 1,365 93 16%

MRI-Q Computing a matrix Q, a scanner’s
configuration in MRI reconstruction 490 33 >99%

COMP 322, Spring 2011 (V.Sarkar)	
9

Speedup of these applications  
relative to a single CPU core"

• GeForce 8800 GTX vs. 2.2GHz Opteron 248
• 10× speedup in a kernel is typical, as long as the kernel can
occupy enough parallel threads

• 25× to 400× speedup if the function’s data requirements
and control flow suit the GPU and the application is
optimized

COMP 322, Spring 2011 (V.Sarkar)	
10

Process Flow of a CUDA Kernel Call
(Figure 2)"

•  Data parallel programming architecture from
NVIDIA
— Execute programmer-defined kernels on

extremely parallel GPUs
— CUDA program flow:

1.  Push data on device
2.  Launch kernel
3.  Execute kernel and memory accesses in

parallel
4.  Pull data off device

•  Device threads are launched in batches
— Blocks of Threads, Grid of Blocks

•  Explicit device memory management
— cudaMalloc, cudaMemcpy, cudaFree, etc.

10

Figure source: Y. Yan et. al “JCUDA: a
Programmer Friendly Interface for
Accelerating Java Programs with CUDA.”
Euro-Par 2009.

COMP 322, Spring 2011 (V.Sarkar)	
11

What Programmer Expresses in CUDA "

•  Computation partitioning (where does computation occur?)
— Declarations on functions __host__, __global__, __device__
— Mapping of thread programs to device: compute <<<gs, bs>>>(<args>)

•  Data partitioning (where does data reside, who may access it and
how?)
•  Declarations on data __shared__, __device__, __constant__, …

•  Data management and orchestration
•  Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

•  Concurrency management
— E.g. __synchthreads()

P

M

P

H
O

ST
 (

C
PU

)

M D
EV

IC
E

(G
PU

)

Interconnect between devices and memories

COMP 322, Spring 2011 (V.Sarkar)	
12

Execution of a CUDA program (Figure 3)"
•  Integrated host+device application

—  Serial or modestly parallel parts on CPU host
—  Highly parallel kernels on GPU device

Host Code
(small number of threads)

. . .

. . .

Device Kernel
(large number of threads)

Host Code
(small number of threads)

Device Kernel
(large number of threads)

Host Code
(small number of threads)

COMP 322, Spring 2011 (V.Sarkar)	
13

Logical Structure of a CUDA kernel
invocation (Listing 1)"

COMP 322, Spring 2011 (V.Sarkar)	
14

Organization of a CUDA grid 
(Figure 4)"

async at(GPU)

async at(GPU)

forall(blockIdx)

forall(threadIdx)

COMP 322, Spring 2011 (V.Sarkar)	
15

Sequential CPU version of matrix
multiply written in C (Figure 5)"

COMP 322, Spring 2011 (V.Sarkar)	
16

M0,2

M1,1

M0,1 M0,0

M1,0

M0,3

M1,2 M1,3

Using a 1-D array to store a 2-D matrix  
(Row major layout)"

M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3

M2,1 M2,0 M2,2 M2,3

M3,1 M3,0 M3,2 M3,3

M3,1 M3,0 M3,2 M3,3

M

Assume square matrix for simplicity

COMP 322, Spring 2011 (V.Sarkar)	
17

Matrix multiplication kernel code in
CUDA (Figure 6)"

COMP 322, Spring 2011 (V.Sarkar)	
18

Launching the Kernel"
•  Four steps in CUDA execution

1. Push data on device
–  Use cudaMalloc() and cudaMemCpy()

•  Will be discussed in next lecture
2. Launch kernel (Figure 7)

–  Two-level forall loops implied by <<<…>>> parameters

3. Execute kernel (Figure 6)
4. Pull data off device

–  Use cudaMemCpy()

