COMP 322: Fundamentals of Parallel Programming

Lecture 5: Parallel Array Sum and Array Reductions

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

Announcements

- Homework 2 is due by 5 pm today
- Homework 3 will be assigned on Monday, Jan $24^{\text {th }}$ and will be due two weeks later on Monday, Feb $7^{\text {th }}$
- This is a programming assignment with abstract performance metrics
- To prepare for HW3, please make sure that you can compile and run the programs from Lab 2 on your own, using the -perf option. In case of problems, please send email to comp322-staff @ mailman.rice.edu
- Graded Homework 1 assignments will be emailed to you by Monday, Jan 24 ${ }^{\text {th }}$

Acknowledgments for Today’s Lecture

- COMP 322 Lecture 5 handout

Sequential Array Sum Program (Lecture 1)

int sum = 0;
for (int $\mathrm{i}=0$; i < X.length ; $\mathrm{i}++$) sum += $X[i]$;

- The original computation graph is sequential
- We studied a 2-task parallel program for this problem
- How can we expose more parallelism?

Computation Graph

Reduction Tree Schema for computing Array Sum in parallel

- This algorithm overwrites X (make a copy if X is needed later)
- stride $=$ distance between array subscript inputs for each addition
- size = number of additions that can be executed in parallel in each level (stage)

Parallel Program that satisfies dependences in Reduction Tree schema (for X.length = 8)

finish \{ // STAGE 1: stride = 1, size = 4 parallel additions async $X[0]+=X[1]$; async $X[2]+=X[3]$;
async $X[4]+=X[5]$; async $X[6]+=X[7]$;
\}
finish \{ // STAGE 2: stride $=2$, size $=2$ parallel additions async $\mathrm{X}[0]+=\mathrm{X}[2]$; async $\mathrm{X}[4]+=\mathrm{X}[6]$:
\}
finish \{ // STAGE 3: stride $=4$, size $=1$ parallel additions async $X[0]+=X[4]$:
\}

Generalization to arbitrary sized arrays (ArraySum1)

for (int stride = 1; stride < X.length ; stride *= 2) \{
// Compute size = number of additions to be performed in stride int size=ceilDiv(X.length, 2*stride):
finish for(int $i=0 ; i<s i z e ; i++)$
async \{
if $\left(\left(2^{\star} i+1\right)^{\star}\right.$ stride < X.length)
X[2*i*stride]+=X[(2*i+1)*stride];
\} // finish-for-async
\} // for
// Divide x by y, round up to next largest int, and return result static int ceilDiv(int x, int y) \{return $(x+y-1) / y$; \}

Complexity Analysis of ArraySum1

- Define $n=X$.length
- Assume that each addition takes 1 unit of time
-Ignore all other computations since they are related to the addition by some constant
- Total number of additions, WORK $=n-1=O(n)$
- Critical path length (number of stages), CPL $=$ ceiling $\left(\log _{2}(n)\right)=$ $O(\log (n))$
- Ideal parallelism $=$ WORK/CPL $=O(n) / O(\log (n))$
- Consider an execution on p processors
-Compute partial sum for n / p elements on each processor
-Use ArraySum1 program to reduce p partial sums to one total sum
$-C P L$ for this version is $O(n / p+\log (p))$
-Parallelism for this version is $O(n) / O(n / p+\log (p))$
- Algorithm is optimal for $p=n / \log (n)$, or fewer, processors - why?

Computation Graph for ArraySum1

Continue edge

- Join edge
- Computation graph has extra dependences relative to schema e.g., $X[0]+=X[2]$ must follow X [4] $+=X[5]$
- Extra dependences can make a difference if computations in same stage take different times e.g., if $X[4]+=X[5]$ and $X[0]+=X[2]$ take 100 time units each
- How can we write a program that avoids these extra dependences?

Extra dependences in ArraySum1 program

$---\quad$ Extra dependence edges due to finish-async stages

Summing an arbitrary sized array using a Recursive method and Future Tasks (ArraySum2)

static int computeSum(int[] X, int lo, int hi) \{

```
    if (lo > hi ) return 0;
```

 else if (lo == hi) return X[lo]:
 else \{
 int mid \(=(10+h i) / 2\);
 Can be replaced by finish-async, but future tasks are more natural
final future<int> sum1 = async<int> \{return computeSum($\mathrm{X}, \mathrm{lo}, \mathrm{mid}$);\}; final future<int> sum2 = async<int> \{return computeSum($\mathrm{X}, \mathrm{mid}+1, \mathrm{hi}$);\}; return sum1.get() + sum2.get();
\}
\} // computeSum int sum = computeSum $(X, 0, X$.length-1): // main program code

Parallel Array Reductions

- Why all this focus on array sum?
- ArraySum1 and ArraySum2 programs can easily be adapted to reduce any associative function f
$-f(x, y)$ is said to be associative if $f(a, f(b, c))=f(f(a, b), c)$ for any inputs a, b, and c
- Sequential version of array reduction:
int result=X[0]:
for(int $\mathrm{i}=1$: $\mathrm{i}<\mathrm{X}$.length : $\mathrm{i}++$) result=f(result,X[i]):
- General reductions have many interesting applications in practice, as you will see when we learn about Google's Map Reduce framework
- Motivates complexity analysis where evaluation of a single call to $f()$ is assumed to take 1 unit of time (could be much larger than an integer add, and justify the use of an async)

Extension of ArraySum1 to reduce an arbitrary associative function, f

for (int stride = 1; stride < X.length ; stride *= 2) \{
// Compute size = number of additions to be performed in stride int size=ceilDiv(X.length,2*stride):
finish for(int $i=0 ; i<s i z e ; i++)$
async \{
if ($\left(2^{\star} i+1\right)^{\star}$ stride < X.length)
X[2*i*stride] = f(X[2*i*stride], X[(2*i+1)*stride]);
\} // finish-for-async
\} // for
// Divide x by y, round up to next largest int, and return result static int ceilDiv(int x, int y) \{return $(x+y-1) / x ;\}$

Extension of ArraySum2 to reduce an arbitrary associative function, f

static int computeSum(int[] X, int lo, int hi) \{
if (lo > hi) return identity():
else if (lo == hi) return X[lo]:
else \{
int mid $=(l o+h i) / 2$;
final future<int> sum1 =
async<int> \{return computeSum(X, lo, mid);\}:
final future<int> sum2 = async<int> \{return computeSum(X, mid+1, hi);\};
return $f($ sum1 $\operatorname{get}()$, sum2.get()):
\}
\} // computeSum
int sum $=$ computeSum $(X, 0, X$.length -1$)$: // main program code

