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Announcements!
•  Next week’s lectures on Feb 9th & 11th (Wed & Fri) will be given 

by John Mellor-Crummey 
•  Homework 3 is due by 5pm on Monday, Feb 7th 

— This is a programming assignment with abstract performance metrics  
— To prepare for HW3, please make sure that you can compile and 

run the programs from Lab 2 on your own, using the –perf option.  
In case of problems, please send email to comp322-staff @ 
mailman.rice.edu 

•  We have requested 24-hour access to Ryon building and Ryon 
102 lab for all students enrolled in COMP 322 

•  Preferred naming convention for homework folders in clear is 
hw_?? e.g. hw_3 
— Please try and use this convention in the future  
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Acknowledgments for Todayʼs Lecture!
•  Michael J. Quinn. Parallel computing (2nd ed.): theory and 

practice. McGraw-Hill, Inc., New York, NY, USA, 1994. ISBN 
0-07-051294-9 

•  “Introduction to Parallel Computing”, 2nd Edition, Ananth 
Grama, Anshul Gupta, George Karypis, Vipin Kumar, Addison- 
Wesley, 2003 

•  COMP 322 Lecture 9 handout 
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Introduction!
•  Rich set of theoretical results obtained for sequential 

algorithms by using a simplified abstraction of hardware, the 
Random Access Machine (RAM) 
— Implementation of sequential RAM algorithms usually work as 

advertised i.e., execution times on real machines usually follow 
trends predicted by big-O complexity analysis 

•  The PRAM model (pronounced “P RAM”) also led to a rich set of 
parallel algorithms by using a simplified abstraction of parallel 
hardware 
— As we will see, there is a much larger gap between parallel PRAM 

algorithms and real parallel programs compared to the gap between 
sequential RAM algorithms and real sequential programs 
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Random Access Machine (RAM) model 
for sequential algorithms!

CONTROL UNIT 

Figure source: Figure 2-1 in [Quinn 1994] 
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Key Features of sequential RAM model!
•  Input of size n read from input tape 
•  Output written to output tape 
•  Control unit consisting of Program + Location counter 

— Program cannot be modified 

•  Randomly accessible memory of unbounded size 
•  Time complexity = number of constant-time statements/

instructions executed by program 
•  Space complexity = maximum number of constant-sized memory 

locations used during program execution (“high water mark”) 
•  Big-O analysis used to model time and space complexity 
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Parallel Random Access Machine 
(PRAM) model!

Figure source: Figure 2-2 in [Quinn 1994] 
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Key Features of PRAM model!
•  Input placed in Global memory at start of program execution 
•  Output placed in Global memory at end of program execution 
•  Unbounded number of processors, each with Private memory 

— Processors need to be explicitly activated 

•  Single control unit for all processors 
— all processors execute the same program statement issued by the 

control unit at the same time in lock step.  
— each processor has a distinct index which can be used as an operand 

in the statements that it executes 

•  Time complexity = number of constant-time statements 
executed by control unit 

•  Space complexity = maximum number of constant-sized memory 
locations used across Global memory and Private memories 
during program execution 

•  Big-O analysis used to model time and space complexity 
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PRAM program execution!
•  Each constant-time statement issued by the Control unit is called a 

step 
•  Each active processor executes a step as follows 

a)   Copy constant number of locations from global memory to private memory 
b)   Perform computation by executing a constant number of RAM instructions on 

private memory 
c)   Conditionally copy a constant number of locations from private memory to 

global memory 

•  Synchronous execution:  
— Implicit finish after each step.  No active processor will start next step 

until all active processors have completed previous step. 
— Implicit finish after read/compute/write portions within a step (items a), 

b), c) above)  

•  Example of a constant-time statement 
—  if A[i] != 0 then B[i] := 1/A[i]; 
— Each active processor Pi will access distinct global memory locations (A[i], B

[i]) due to use of processor index i 
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PRAM algorithm for Array Sum!

•  Consider translating step 3 to HJ by using an outer parallel 
forall and inner sequential for loop 
— Would it be a correct translation of the PRAM algorithm? 
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Direct translation of PRAM Array sum 
algorithm to HJ task-parallel program!

1.   forall (point[i] : [0:n/2-1]) { 
2.     for (point[j] : [0:ceilLog2(n)-1]) { 
3.       int exp2j = 1<<j;  
4.       if (i % exp2j == 0 && 2*i+exp2j < n)  
5.         A[2*i] = A[2*i] + A[2*i+exp2j] 
6.     } // for 
7.   } // forall  
8.   static int ceilLog2(int n) { // returns 0 if n <= 0 
9.     int r=0; while (n > 1) { r++; n = n >> 1; } return r; 
10.   } 
Is there a data race in this program? 
If so, why was the PRAM algorithm correct? 
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PRAM model has implicit finish after 
each step!
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Correct translation of PRAM Array sum 
algorithm to HJ task-parallel program!

1.  for (point[j] : [0:ceilLog2(n)-1]) { 
2.    forall (point[i] : [0:n/2-1]) { 
3.      int exp2j = 1<<j;  
4.      if (i % exp2j == 0 && 2*i+exp2j < n)  
5.        A[2*i] = A[2*i] + A[2*i+exp2j] 
6.    } // for 
7.  } // forall 

•  Moving the forall loop inside the for loop inserts implicit finish 
after each step (lines 3, 4, 5) 

•  Think of a PRAM program as sequential at the outer level, while 
executing each step as a forall loop across all processors 
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Conflicting Memory Operations in PRAM 
model!

•  No conflict possible between global memory operations in 
different steps – why? 

•  No conflicts possible between read and write global memory 
operations in same step – why? 

•  No conflicts possible on read/write operations on private 
memory – why? 

•  This only leaves the possibility of conflicting write operations on 
global memory in the same step 
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Variants of PRAM model!
•  EREW (Exclusive Read Exclusive Write): No read or write 

conflicts are permitted on global memory in same step. 
•  CREW (Concurrent Read Exclusive Write): Multiple active 

processors may read from the same location in the same step, 
but only one active processor may write to a given location in 
one step. Default assumption in the PRAM model. 

•  CRCW (Concurrent Read Concurrent Write): Multiple active 
processors may read from or write to the same location in the 
same step.  Different policies for conflicting writes: 
— Common CRCW rule: All conflicting writes must write the same 

common value. Deterministic output. 
— Arbitrary CRCW rule: If multiple processors write to the same 

global location in the same step, one of the values is arbitrarily 
chosen.  Nondeterministic data race among atomic writes. 

— Priority CRCW rule: If multiple processors write to the same global 
location in the same step, then the value provided by the processor 
with the lowest index is chosen as the winner. Deterministic output. 
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Strengths of different PRAM models!
•  Model B is said to be stronger than model A if a program 

written for A can run unchanged on model B with the same or 
smaller execution time and space relative to its execution on 
model A. 

•  PRAM variants on previous slide were listed in order of 
increasing strength, with Priority CRCW being the strongest. 

•  Bound on impact of models if we try to run a program written 
for Priority CRCW PRAM on an EREW PRAM 
— A p-processor Priority CRCW PRAM program can be executed on a 

p-processor EREW PRAM model with an increase in execution time 
complexity of at most an O(log p) factor 
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Amdahlʼs Law [1967]!
•  If q ≤ 1 is the fraction of WORK in a parallel program that 

must be executed sequentially, then the best speedup that can 
be obtained for that program is Speedup ≤ 1/q. 

•  Observation follows directly from critical path length lower 
bound on parallel execution time, tP ≥ CPL(G) 

•  If fraction q of WORK is sequential then CPL(G) ≥ qWORK 
•  Therefore, Speedup = t1/tP must be ≤ WORK/(qWORK) = 1/q 

•  Sequential portion of WORK = q (also denoted as fS sometimes) 
•  Parallel portion of WORK = 1-q (also denoted as fp sometimes) 



COMP 322, Spring 2011 (V.Sarkar)	
18 

Illustration of Amdahlʼs Law: 
Best Case Speedup as function of Parallel Portion!

Figure source: http://en.wikipedia.org/wiki/Amdahl’s law 

(log scale)"
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Amdahlʼs Law: Alternate Formulation!

Source: “Introduction to Parallel Computing”, 2nd Edition, Grama et al, Addison- Wesley, 2003 
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Another Illustration of Amdahlʼs Law!

Source: “Introduction to Parallel Computing”, 2nd Edition, Grama et al, Addison- Wesley, 2003 


