
COMP 322: Fundamentals of
Parallel Programming

Lecture 9: Parallel Random Access
Machine (PRAM) Computation Model

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 9 31January 2011

COMP 322, Spring 2011 (V.Sarkar)	
2

Announcements!
•  Next week’s lectures on Feb 9th & 11th (Wed & Fri) will be given

by John Mellor-Crummey
•  Homework 3 is due by 5pm on Monday, Feb 7th

— This is a programming assignment with abstract performance metrics
— To prepare for HW3, please make sure that you can compile and

run the programs from Lab 2 on your own, using the –perf option.
In case of problems, please send email to comp322-staff @
mailman.rice.edu

•  We have requested 24-hour access to Ryon building and Ryon
102 lab for all students enrolled in COMP 322

•  Preferred naming convention for homework folders in clear is
hw_?? e.g. hw_3
— Please try and use this convention in the future

COMP 322, Spring 2011 (V.Sarkar)	
3

Acknowledgments for Todayʼs Lecture!
•  Michael J. Quinn. Parallel computing (2nd ed.): theory and

practice. McGraw-Hill, Inc., New York, NY, USA, 1994. ISBN
0-07-051294-9

•  “Introduction to Parallel Computing”, 2nd Edition, Ananth
Grama, Anshul Gupta, George Karypis, Vipin Kumar, Addison-
Wesley, 2003

•  COMP 322 Lecture 9 handout

COMP 322, Spring 2011 (V.Sarkar)	
4

Introduction!
•  Rich set of theoretical results obtained for sequential

algorithms by using a simplified abstraction of hardware, the
Random Access Machine (RAM)
— Implementation of sequential RAM algorithms usually work as

advertised i.e., execution times on real machines usually follow
trends predicted by big-O complexity analysis

•  The PRAM model (pronounced “P RAM”) also led to a rich set of
parallel algorithms by using a simplified abstraction of parallel
hardware
— As we will see, there is a much larger gap between parallel PRAM

algorithms and real parallel programs compared to the gap between
sequential RAM algorithms and real sequential programs

COMP 322, Spring 2011 (V.Sarkar)	
5

Random Access Machine (RAM) model
for sequential algorithms!

CONTROL UNIT

Figure source: Figure 2-1 in [Quinn 1994]

COMP 322, Spring 2011 (V.Sarkar)	
6

Key Features of sequential RAM model!
•  Input of size n read from input tape
•  Output written to output tape
•  Control unit consisting of Program + Location counter

— Program cannot be modified

•  Randomly accessible memory of unbounded size
•  Time complexity = number of constant-time statements/

instructions executed by program
•  Space complexity = maximum number of constant-sized memory

locations used during program execution (“high water mark”)
•  Big-O analysis used to model time and space complexity

COMP 322, Spring 2011 (V.Sarkar)	
7

Parallel Random Access Machine
(PRAM) model!

Figure source: Figure 2-2 in [Quinn 1994]

COMP 322, Spring 2011 (V.Sarkar)	
8

Key Features of PRAM model!
•  Input placed in Global memory at start of program execution
•  Output placed in Global memory at end of program execution
•  Unbounded number of processors, each with Private memory

— Processors need to be explicitly activated

•  Single control unit for all processors
— all processors execute the same program statement issued by the

control unit at the same time in lock step.
— each processor has a distinct index which can be used as an operand

in the statements that it executes

•  Time complexity = number of constant-time statements
executed by control unit

•  Space complexity = maximum number of constant-sized memory
locations used across Global memory and Private memories
during program execution

•  Big-O analysis used to model time and space complexity

COMP 322, Spring 2011 (V.Sarkar)	
9

PRAM program execution!
•  Each constant-time statement issued by the Control unit is called a

step
•  Each active processor executes a step as follows

a)   Copy constant number of locations from global memory to private memory
b)   Perform computation by executing a constant number of RAM instructions on

private memory
c)   Conditionally copy a constant number of locations from private memory to

global memory

•  Synchronous execution:
— Implicit finish after each step. No active processor will start next step

until all active processors have completed previous step.
— Implicit finish after read/compute/write portions within a step (items a),

b), c) above)

•  Example of a constant-time statement
—  if A[i] != 0 then B[i] := 1/A[i];
— Each active processor Pi will access distinct global memory locations (A[i], B

[i]) due to use of processor index i

COMP 322, Spring 2011 (V.Sarkar)	
10

PRAM algorithm for Array Sum!

•  Consider translating step 3 to HJ by using an outer parallel
forall and inner sequential for loop
— Would it be a correct translation of the PRAM algorithm?

COMP 322, Spring 2011 (V.Sarkar)	
11

Direct translation of PRAM Array sum
algorithm to HJ task-parallel program!

1.  forall (point[i] : [0:n/2-1]) {
2.  for (point[j] : [0:ceilLog2(n)-1]) {
3.  int exp2j = 1<<j;
4.  if (i % exp2j == 0 && 2*i+exp2j < n)
5.  A[2*i] = A[2*i] + A[2*i+exp2j]
6.  } // for
7.  } // forall
8.  static int ceilLog2(int n) { // returns 0 if n <= 0
9.  int r=0; while (n > 1) { r++; n = n >> 1; } return r;
10.  }
Is there a data race in this program?
If so, why was the PRAM algorithm correct?

COMP 322, Spring 2011 (V.Sarkar)	
12

PRAM model has implicit finish after
each step!

COMP 322, Spring 2011 (V.Sarkar)	
13

Correct translation of PRAM Array sum
algorithm to HJ task-parallel program!

1.  for (point[j] : [0:ceilLog2(n)-1]) {
2.  forall (point[i] : [0:n/2-1]) {
3.  int exp2j = 1<<j;
4.  if (i % exp2j == 0 && 2*i+exp2j < n)
5.  A[2*i] = A[2*i] + A[2*i+exp2j]
6.  } // for
7.  } // forall

•  Moving the forall loop inside the for loop inserts implicit finish
after each step (lines 3, 4, 5)

•  Think of a PRAM program as sequential at the outer level, while
executing each step as a forall loop across all processors

COMP 322, Spring 2011 (V.Sarkar)	
14

Conflicting Memory Operations in PRAM
model!

•  No conflict possible between global memory operations in
different steps – why?

•  No conflicts possible between read and write global memory
operations in same step – why?

•  No conflicts possible on read/write operations on private
memory – why?

•  This only leaves the possibility of conflicting write operations on
global memory in the same step

COMP 322, Spring 2011 (V.Sarkar)	
15

Variants of PRAM model!
•  EREW (Exclusive Read Exclusive Write): No read or write

conflicts are permitted on global memory in same step.
•  CREW (Concurrent Read Exclusive Write): Multiple active

processors may read from the same location in the same step,
but only one active processor may write to a given location in
one step. Default assumption in the PRAM model.

•  CRCW (Concurrent Read Concurrent Write): Multiple active
processors may read from or write to the same location in the
same step. Different policies for conflicting writes:
— Common CRCW rule: All conflicting writes must write the same

common value. Deterministic output.
— Arbitrary CRCW rule: If multiple processors write to the same

global location in the same step, one of the values is arbitrarily
chosen. Nondeterministic data race among atomic writes.

— Priority CRCW rule: If multiple processors write to the same global
location in the same step, then the value provided by the processor
with the lowest index is chosen as the winner. Deterministic output.

COMP 322, Spring 2011 (V.Sarkar)	
16

Strengths of different PRAM models!
•  Model B is said to be stronger than model A if a program

written for A can run unchanged on model B with the same or
smaller execution time and space relative to its execution on
model A.

•  PRAM variants on previous slide were listed in order of
increasing strength, with Priority CRCW being the strongest.

•  Bound on impact of models if we try to run a program written
for Priority CRCW PRAM on an EREW PRAM
— A p-processor Priority CRCW PRAM program can be executed on a

p-processor EREW PRAM model with an increase in execution time
complexity of at most an O(log p) factor

COMP 322, Spring 2011 (V.Sarkar)	
17

Amdahlʼs Law [1967]!
•  If q ≤ 1 is the fraction of WORK in a parallel program that

must be executed sequentially, then the best speedup that can
be obtained for that program is Speedup ≤ 1/q.

•  Observation follows directly from critical path length lower
bound on parallel execution time, tP ≥ CPL(G)

•  If fraction q of WORK is sequential then CPL(G) ≥ qWORK
•  Therefore, Speedup = t1/tP must be ≤ WORK/(qWORK) = 1/q

•  Sequential portion of WORK = q (also denoted as fS sometimes)
•  Parallel portion of WORK = 1-q (also denoted as fp sometimes)

COMP 322, Spring 2011 (V.Sarkar)	
18

Illustration of Amdahlʼs Law: 
Best Case Speedup as function of Parallel Portion!

Figure source: http://en.wikipedia.org/wiki/Amdahl’s law

(log scale)"

COMP 322, Spring 2011 (V.Sarkar)	
19

Amdahlʼs Law: Alternate Formulation!

Source: “Introduction to Parallel Computing”, 2nd Edition, Grama et al, Addison- Wesley, 2003

COMP 322, Spring 2011 (V.Sarkar)	
20

Another Illustration of Amdahlʼs Law!

Source: “Introduction to Parallel Computing”, 2nd Edition, Grama et al, Addison- Wesley, 2003

