
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 15: Abstract vs. Real Performance

— an “under the hood” look at HJlib

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 15 16 February 2015

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #14 solution: Data-Driven Tasks
 For the example below, will reordering the five async statements change the meaning

of the program (assuming that the semantics of the reader/writer methods depends
only on their parameters)? If so, show two orderings that exhibit different behaviors.
If not, explain why not. (You can use the space below this slide for your answer.)

1. DataDrivenFuture left = new DataDrivenFuture();!

2. DataDrivenFuture right = new DataDrivenFuture();!

3. finish {!

4. async await(left) leftReader(left); // Task3!

5. async await(right) rightReader(right); // Task5!

6. async await(left,right) !

7. bothReader(left,right); // Task4!

8. async left.put(leftWriter()); // Task1!

9. async right.put(rightWriter());// Task2!

10. }!

!
No, reordering consecutive async’s will never change the meaning of the program,

whether or not the async’s have await clauses.

2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

HJ-lib Compilation and Execution
Environment

Foo.java

Java compiler Java compiler translates Foo.hj to Foo.class, along with
calls to HJ-lib with lambda parameters (async, finish,
future, etc)

Foo.class

HJ-lib source program is a standard Java 8 program

HJ-lib Runtime Environment =

Java Runtime Environment +

HJ-lib libraries

HJ Abstract Performance Metrics,
HJ-viz output
(all enabled by appropriate options)

HJ-lib Program Output

javac Foo.java

java Foo

HJ runtime initializes m worker threads
(value of m depends on options or default value)

Java 8 IDE

3

All the “magic” happens here!

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Looking under the hood — let’s start
with the hardware

A single STIC compute node contains two quad-core 2.4GHz Intel
Xeon (Nahalem) CPUs, for a total of 8 cores/node

4

Main Memory (DRAM)

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Next, how does a process run on a single core?

Context switches between two processes can be very expensive!
Source: COMP 321 lecture on Exceptional Control Flow (Alan Cox, Scott Rixner)

5

• A Java program executes in a
single Java Virtual Machine (JVM)
process with multiple threads

• Threads associated with a single
process can share the same data

• Java main program starts with a
single thread (T1), but can create
additional threads (T2, T3, T4, T5)
via library calls

• Java threads may execute
concurrently on different cores, or
may be context-switched on the
same core

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

What happens when executing a Java
program?

6

T1!

T2!
T4!

T5! T3!

shared code, data!
and process context!

Figure source: COMP 321 lecture on
Concurrency (Alan Cox, Scott Rixner)

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Thread-level Context Switching on the same
processor core

7

• Thread context switch is cheaper than a process context switch,
but is still expensive (just not “very” expensive!)

• It would be ideal to just execute one thread per core (or hardware
thread context) to avoid context switches

Figure source: COMP 321 lecture on Concurrency (Alan Cox, Scott Rixner)

Thread 1!
(main thread)!

Thread 2!
(peer thread)!

Time!
thread context switch!

thread context switch!

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Now, what happens in a task-parallel Java
program (e.g., HJ-lib, Java ForkJoin, etc)

8

• Task-parallel runtime creates a small number of worker threads,
typically one per core

• Workers push new tasks and “continuations” into a logical work
queue

• Workers pull task/continuation work items from logical work queue
when they are idle (remember greedy scheduling?)

HJ-Lib Tasks &
Continuations

Worker threads

Operating
System

Hardware cores

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Continuations
• A continuation is one of two kinds of program points

—The point in the parent task immediately following an async
—The point immediately following a blocking operation, such as an end-

finish, future get(), or barrier

• Continuations are also referred to as task-switching points
—Program points at which a worker may switch execution between different

tasks (depends on scheduling policy)
1.finish { // F1
2. async A1;
3. finish { // F2
4. async A3;
5. async A4;
6. }
7. S5;
8.}

Continuations

9

NOTE: these are
“one-shot”

continuations, unlike
continuations in

functional programs
that can be called

multiple times

COMP 322, Spring 2015 (V.Sarkar, E.Allen)10

Task-Parallel Model: Checkout Counter Analogy

2

• Think of each checkout counter as a processor core

Image sources: http://www.deviantart.com/art/Randomness-20-178737664,
http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

COMP 322, Spring 2015 (V.Sarkar, E.Allen)11

Task-Parallel Model: Checkout Counter Analogy

2

• Think of each checkout counter as a processor core
• And of customers as tasks

source: http://www.deviantart.com/art/Randomness-20-178737664

COMP 322, Spring 2015 (V.Sarkar, E.Allen)12

All is well until a task blocks …

2

• A blocked task/customer can hold up the entire line
• What happens if each checkout counter has a blocked

customer?
source: http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

. . .

COMP 322, Spring 2015 (V.Sarkar, E.Allen)13

Approach 1: Create more worker threads
(as in HJ-Lib’s Blocking Runtime)

2source: http://www.deviantart.com/art/Randomness-5-90424754

• Creating too many worker threads can exhaust system
resources (OutOfMemoryError), and also leads to context-
switch overheads when blocked worker threads get unblocked
• Context-switching in checkout counters stretches the analogy — maybe

assume that there are 8 keys to be shared by all active checkout counters?

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Blocking Runtime (contd)
• Examples of blocking operations

— End of finish

— Future get

— Barrier next

• Blocks underlying worker thread, and launches an additional worker
thread

• Too many blocking constructs can result in lack of performance and
exceptions

— java.lang.IllegalStateException: Error in executing
blocked code! [89 blocked threads]!

— Maximum number of worker threads can be configured if needed

— System.setProperty(HjSystemProperty.maxThreads.prop
ertyKey(), "100");

14

COMP 322, Spring 2015 (V.Sarkar, E.Allen)15

Approach 2: Suspend task continuations at blocking
points (as in HJ-Lib’s Cooperative Runtime)

2

• Task actively suspends itself and yields control back to the
worker

• Task’s continuation is stored in the suspended queue and
added back into the ready queue when it is unblocked

• Pro: No overhead of creating additional worker threads
• Con: Complexity and overhead of creating continuations

C
he

ck
ou

t
co

un
te

r

Ready
Queue Suspended

Queue

Cooperative Scheduling: http://en.wikipedia.org/wiki/Computer_multitasking#Cooperative_multitasking

COMP 322, Spring 2015 (V.Sarkar, E.Allen)16

Cooperative Scheduling
(view from a single worker)

10

block

…

unblock

suspend

suspend

…

resume

suspend/complete

Useful work
for some

other task on
same worker

thread
block

tim
e

(in
cr

ea
se

s
do

w
nw

ar
ds

)

Task-1 Task-1

Task-2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)17

HJ-lib’s Cooperative Runtime

22

…

task
task
task

task
task

…

EDC EDC

…

Ready/Resumed Task Queues
Suspended Tasks

registered with “Event-Driven
Controls”

Worker Threads Synchronization objects
that use EDCs

EDC

{ }task
{ }task

{ }task

Any operation that contributes to unblocking a task can be viewed as an event e.g., task
termination in finish, return from a future, signal on barrier, put on a data-driven-future, …

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Recap of Data-Driven Tasks

1. finish(() -> {!

2. HjDataDrivenFuture<Void> ddfA = newDataDrivenFuture();!

3. HjDataDrivenFuture<Void> ddfB = newDataDrivenFuture();!

4. HjDataDrivenFuture<Void> ddfC = newDataDrivenFuture();!

5. HjDataDrivenFuture<Void> ddfD = newDataDrivenFuture();!

6. HjDataDrivenFuture<Void> ddfE = newDataDrivenFuture();!

7. async(() -> { ... ; ddfA.put(null); }); // Task A!

8. asyncAwait(ddfA, () -> { ... ; ddfB.put(null); }); // Task B!

9. asyncAwait(ddfA, () -> { ... ; ddfC.put(null); }); // Task C!

10. asyncAwait(ddfB, ddfC, ()->{ ... ; ddfD.put(null); }); // Task D!

11. asyncAwait(ddfC, () -> { ... ; ddfE.put(null); }); // Task E!

12. asyncAwait(ddfD, ddfE, () -> { ... }); // Task F!

13. }); // finish

18

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Why are Data-Driven Tasks (DDTs)
more efficient than Futures?

• Consumer task blocks on get() for each future that it reads,
whereas async-await does not start execution till all Data-
Driven Futures (DDFs) are available
— An “asyncAwait” statement does not block the worker,

unlike a future.get()
— No need to create a continuation for asyncAwait; a data-

driven task is directly placed on the Suspended queue by
default

!
• Therefore, DDTs can be executed on a Blocking Runtime

without the need to create additional worker threads, or on a
Cooperative Runtime without the need to create
continuations

19

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Work-Sharing vs. Work-Stealing
Scheduling Paradigms

• Work-Sharing
—Busy worker eagerly distributes new work
—Easy implementation with global task pool
—Access to the global pool needs to be

synchronized: scalability bottleneck

• Work-Stealing
—Each worker has its own double-ended queue

(deque)
—Idle worker “steals” the tasks from busy

worker’s deque
—When task Τa spawns Τb, the worker can

–stay on Τa, making Τb available for execution
by another processor (help-first policy), or

–start working on Τb first (work-first policy)

w1 w2 w3 w4

push
task

pull
task

work-sharing

w1 w2 w3

work-stealing runtime

steal task

206

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Work-first vs. Help-first
work-stealing policies

• When encountering an async
• Help-first policy

• Push async on “bottom” of local queue, and
execute next statement

• Work-first policy
• Push continuation (remainder of task

starting with next statement) on “bottom”
of local queue, and execute async

• When encountering the end of a finish scope
• Help-first policy & Work-first policy

• Store continuation for end-finish
• Will be resumed by last async to

complete in finish scope
• Pop most recent item from “bottom” of local

queue
• If local queue is empty, steal from “top” of

another worker’s queue

•Current HJ-lib runtime only supports help-first policy

w1 w2 w3

Stealing by w2 and w3

w1 w2 w3

Local push/pop by w1

“top”

“bottom”

21

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Work-first vs. Help-first work-stealing
policies on 2 processors

1. finish {
2. // Start of Task T0 (main program)
3. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields
4. async { // Task T1 computes sum of upper half of array
5. for(int i=X.length/2; i < X.length; i++)
6. sum2 += X[i];
7. }
8. // T0 computes sum of lower half of array
9. for(int i=0; i < X.length/2; i++) sum1 += X[i];
10. }
11. // Task T0 waits for Task T1 (join)
12. return sum1 + sum2;
13.} // finish
• Help-first policy: Worker 0 executes lines 1, 2, 3 in T0, pushes out async on line 4, and then

executes lines 8, 9 in Task T0. Worker 1 steals async on line 4 and executes task T1.

• Work-first policy: Worker 0 executes lines 1, 2, 3 in T0, pushes out continuation on line 8,
and then executes async in task T0. Worker 1 steals continuation at line 8 in T0.

22

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Work-first vs. Help-first work-stealing
policies on 2 processors (contd)

1. finish {
2. // Start of Task T0 (main program)
3. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields
4. async { // Task T1 computes sum of upper half of array
5. for(int i=X.length/2; i < X.length; i++)
6. sum2 += X[i];
7. }
8. // T0 computes sum of lower half of array
9. for(int i=0; i < X.length/2; i++) sum1 += X[i];
10. }
11. // Task T0 waits for Task T1 (join)
12. return sum1 + sum2;
13.} // finish

23

Continuations

Help-First worker does not switch tasks
Work-first worker will switch tasks

Help-First worker can switch tasks
Work-first worker can switch tasks

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Summary: Abstract vs. Real
Performance in HJlib

• Abstract Performance
—Abstract metrics focus on operation counts for WORK and CPL, regardless of

actual execution time
• Real Performance

—HJlib uses ForkJoinPool implementation of Java Executor interface with
Blocking or Cooperative Runtime (option-controlled)

24

We’ll study
ForkJoinPool and

other Java
libraries in detail

later in the
course --- they

manage
parallelism at a
lower level than

HJ

