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Solution to Worksheet #24:  
Linearizability of method calls on a concurrent object

Is this a linearizable execution for a FIFO queue, q?
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No! q.enq(x) must precede q.enq(y) in all linear sequences of 
method calls invoked on q.  It is illegal for the q.deq() operation to 
return y.
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Introduction to Java threads: 
java.lang.Thread class

• Execution of a Java program begins with an instance of Thread 
created by the Java Virtual Machine (JVM) that executes the 
program’s main() method.  

• Parallelism can be introduced by creating additional instances of 
class Thread that execute as parallel threads. 
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A lambda can be 
passed as a Runnable
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start() and join() methods
• A Thread instance starts executing when its start() method 

is invoked 
— start() can be invoked at most once per Thread instance 

– Like actors, except that Java threads don’t process messages 
— As with async, the parent thread can immediately move to the next 

statement after invoking t.start() 

• A t.join() call forces the invoking thread to wait till thread t 
completes.  
— Lower-level primitive than finish since it only waits for a single thread 

rather than a collection of threads 
— No restriction on which thread performs a join on which thread, so it 

is possible to create a deadlock cycle using join() 
– Declaring thread references as final does not help because the 

new() and start() operations are separated for threads (unlike 
futures, where they are integrated)
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Two-way Parallel Array Sum  
using Java Threads
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1.  // Start of main thread 

2.  sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields 

3.  Thread t1 = new Thread(() -> { 

4.      // Child task computes sum of lower half of array 

5.      for(int i=0; i < X.length/2; i++) sum1 += X[i];  

6.    });  

7.  t1.start(); 

8.  // Parent task computes sum of upper half of array 

9.  for(int i=X.length/2; i < X.length; i++) sum2 += X[i]; 

10. // Parent task waits for child task to complete (join) 

11. t1.join(); 

12. return sum1 + sum2;   
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Two-way Parallel Array Sum  
using HJ-Lib’s finish & async API’s
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1.  // Start of Task T0 (main program) 

2.  sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields 

3.  finish(() -> { 

4.    async(() -> { 

5.      // Child task computes sum of lower half of array 

6.      for(int i=0; i < X.length/2; i++) sum1 += X[i];  

7.    });   

8.    // Parent task computes sum of upper half of array 

9.    for(int i=X.length/2; i < X.length; i++) sum2 += X[i]; 

10. }); 

11. // Parent task waits for child task to complete (join) 

12. return sum1 + sum2;   
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HJlib runtime uses Java threads as 
workers

• HJlib runtime creates a small number of worker threads, typically one per 
core 

• Workers push async’s/continuations into a logical work queue 

• when an async operation is performed 

• when an end-finish operation is reached 

• Workers pull task/continuation work item when they are idle
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How to convert a sequential library to a 
monitor in HJ vs. Java?

HJ approach: 

• Use object-based isolation to ensure that each call to a public method is isolated on “this” e.g.,  

public void add(...) { isolated(this) { .... } } 

• Can also use general isolated statement, but that is overkill e.g.,  
public void add(...) { isolated { .... } }  
!

Java approach: 
•   Use Java’s synchronized statement instead of object-based isolation e.g.,  

public void add(...) { synchronized(this) { .... } } 
or equivalently 
public synchronized void add(...) { ....  } 

• Both HJ and Java programs can use specialized implementations of monitors 
available in java.util.concurrent 
— ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArraySet
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Objects and Locks in Java --- 
synchronized statements and methods

• Every Java object has an associated lock acquired via: 
— synchronized statements 

–   synchronized( foo ) { // acquire foo’s lock  
   // execute code while holding foo’s lock 
} // release foo’s lock 

— synchronized methods 
–   public synchronized void op1() { // acquire ‘this‘ lock 

   // execute method while holding ‘this’ lock 
} // release ‘this’ lock 

• Java language does not enforce any relationship between object used for locking and objects accessed 
in isolated code 
— If same object is used for locking and data access, then the object behaves 

like a monitor 
• Locking and unlocking are automatic 

— Locks are released when a synchronized block exits 
• By normal means: end of block reached, return, break 
• When an exception is thrown and not caught
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Locking guarantees in Java
• It is desirable to use java.util.concurrent.atomic and other standard 

monitor classes when possible 
• Locks are needed for more general cases. Basic idea is to implement 

synchronized(a) <stmt> as follows: 
1. Acquire lock for object a 
2. Execute <stmt> 
3. Release lock for object a 

• The responsibility for ensuring that the choice of locks correctly 
implements the semantics of monitors/isolated lies with the 
programmer.   

• The main guarantee provided by locks is that only one thread can hold 
a given lock at a time, and the thread is blocked when acquiring a lock 
if the lock is unavailable.
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Java’s Object Locks are Reentrant
• Locks are granted on a per-thread basis 

— Called reentrant or recursive locks 
— Promotes object-oriented concurrent code 

• A synchronized block means execution of this code requires the current thread to hold this lock 
— If it does — fine 
— If it doesn’t — then acquire the lock 

• Reentrancy means that recursive methods,  invocation of super methods, or local callbacks, don’t deadlock 
   public class Widget { 
      public synchronized void doSomething() { ... } 
   } 
   public class LoggingWidget extends Widget { 
      public synchronized void doSomething() { 
          Logger.log(this + ": calling doSomething()"); 
          super.doSomething();  // Doesn't deadlock!  

    }  
 }
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Deadlock example with Java 
synchronized statement

• The code below can deadlock if leftHand() and rightHand() are called concurrently from 
different threads 
— Because the locks are not acquired in the same order 

 public class ObviousDeadlock { 
    . . . 
    public void leftHand() { 
        synchronized(lock1) { 
            synchronized(lock2) { 
                for (int i=0; i<10000; i++)  
                    sum += random.nextInt(100); 
            } 
        } 
    } 
    public void rightHand() { 
        synchronized(lock2) { 
            synchronized(lock1) { 
                for (int i=0; i<10000; i++)  
                    sum += random.nextInt(100); 
            } 
        } 
    } 
 }
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Deadlock avoidance in HJ with object-
based isolation

• HJ implementation ensures that all locks are acquired in the same order 

• ==> no deadlock 
 public class NoDeadlock1 { 
    . . . 
    public void leftHand() { 
        isolated(lock1, lock2) { 
                for (int i=0; i<10000; i++)  
                    sum += random.nextInt(100); 
  
        } 
    } 
    public void rightHand() { 
        isolated(lock2,lock1) { 
                for (int i=0; i<10000; i++)  
                    sum += random.nextInt(100); 
            } 
        } 
    } 
 }
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Dynamic Order Deadlocks
• There are even more subtle ways for threads to deadlock due to inconsistent lock ordering 

— Consider a method to transfer a balance from one account to another: 
public class SubtleDeadlock { 
       public void transferFunds(Account from,  
                                 Account to,  
                                 int amount) { 
           synchronized (from) { 
               synchronized (to) { 
                   from.subtractFromBalance(amount); 
                   to.addToBalance(amount); 
               } 
           } 
       } 
   } 
— What if one thread tries to transfer from A to B while another tries to transfer from B to A ? 

Inconsistent lock order again – Deadlock!
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Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering 
— Here, uses an existing unique numeric key, acctId, to establish an order 

public class SafeTransfer { 
       public void transferFunds(Account from, Account to, int amount) { 
          Account firstLock, secondLock;  

        if (fromAccount.acctId == toAccount.acctId) 
            throw new Exception(“Cannot self-transfer”); 
        else if (fromAccount.acctId < toAccount.acctId) { 
            firstLock = fromAccount;  
            secondLock = toAccount;  
        }  
        else {  
            firstLock = toAccount;  
            secondLock = fromAccount;  
        }  
        synchronized (firstLock) { 

             synchronized (secondLock) { 
                from.subtractFromBalance(amount); 
                to.addToBalance(amount); 
             } 
          } 
       }  

  }
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