COMP 322: Fundamentals of
Parallel Programming

Lecture 26: Introduction to Java Threads &
Synchronized Statement

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
COMP 322 Lecture 26 23 March 2015 %\Q

Solution to Worksheet #24:
Linearizability of method calls on a concurrent object

Is this a linearizable execution for a FIFO queue, q?

Time || Task A Task B
0 Invoke q.enq(x)
1 Return from q.enq(x)
2 Invoke q.enq(y)
3 Invoke q.deq() Work on q.enq(y)
4 Work on q.deq() Return from q.enq(y)
5 Return y from q.deq()

No! q.enq(x) must precede g.enq(y) in all linear sequences of
method calls invoked on q. Itis illegal for the q.deq() operation to
returny.

° COMP 322, Spring 2015 (V.Sarkar, E.Allen) A

Introduction to Java threads:
java.lana.Thread class

e Execution of a Java program begins with an instance of Thread
created by the Java Virtual Machine (JVM) that executes the
program’s main() method.

e Parallelism can be introduced by creating additional instances of
class Thread that execute as parallel threads.

I
1 public class Thread extends Object implements Runnable {
2 Thread () { ... } // Creates a new Thread
3 Thread (Runnable_r) { ... } // Creates a new Thread with Runnable object r
4 void run() { y_be executed by t}
5 // Case 1: If this thread W \
6 // then that object’s run met A |ambda can be
7 // Case 2: If this class is subclassed, ’
8 // in the subclass is called pGSSCd as a Rw
9 void start() { ... } // Causes this thread t
10 void join() { ... } // Wait for this thread to di
11 void join(long m) // Wait at most m milliseconds for thread to die
12 static Thread currentThread() // Returns currently executing thread
13
14| }
l

3 COMP 322, Spring 2015 (V.Sarkar, E.Allen) @«»

start() and join() methods

e A Thread instance starts executing when its start() method
is invoked
— start() can be invoked at most once per Thread instance
— Like actors, except that Java threads don’t process messages

— As with async, the parent thread can immediately move to the next
statement after invoking t.start()

e At.join() call forces the invoking thread to wait till thread t
completes.

— Lower-level primitive than finish since it only waits for a single thread
rather than a collection of threads

— No restriction on which thread performs a join on which thread, so it
is possible to create a deadlock cycle using join()

— Declaring thread references as final does not help because the
new() and start() operations are separated for threads (unlike
futures, where they are integrated)

4 COMP 322, Spring 2015 (V.Sarkar, E.Allen) @

Two-way Parallel Array Sum
using Java Threads

© 00 Jd oo U1 & W N B

e
N B O

// Start of main thread
suml = 0; sum2 = 0; // suml & sum2 are static fields
Thread tl = new Thread(() -> {
// Child task computes sum of lower half of array
for (int i=0; i < X.length/2; i++) suml += X[i];
}) s
tl.start () ;
// Parent task computes sum of upper half of array
for (int i=X.length/2; i < X.length; i++) sum2 += X[i];
// Parent task waits for child task to complete (join)
tl.join() ;

return suml + sum2;

COMP 322, Spring 2015 (V.Sarkar, E.Allen) %}1

Two-way Parallel Array Sum
using HJ-Lib’s finish & async API’s

© 00 Jd oo U1 & W N B

e
N B O

// Start of Task TO (main program)
suml = 0; sum2 = 0; // suml & sum2 are static fields
finish(() -> {
async(() -> {
// Child task computes sum of lower half of array
for (int i=0; i < X.length/2; i++) suml += X[i];
});
// Parent task computes sum of upper half of array
for (int i=X.length/2; i < X.length; i++) sum2 += X[i];
});
// Parent task waits for child task to complete (join)

return suml + sum2;

COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

HJlib runtime uses Java threads as

Logical Work Queue
(async’s & continuations) Local variables are
private to each task
‘ b~
push [hadededodod pull
work work

)
(¢ (

Workers w;, w, W, W,

Static & instance fields are shared among tasks

~ L7
S
S

HJlib runtime creates a small number of worker threads, typically one per
core
Workers push async’s/continuations into a logical work queue

e when an async operation is performed
e when an end-finish operation is reached

Workers pull task/continuation work item when they are idle

COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

How to convert a sequential library to a
monitor in HJ vs. Java?

HJ approach:
* Use object-based isolation to ensure that each call to a public method is isolated on “this” e.g.,
public void add(...) { i1solated(this) { } }
o (Can also use general isolated statement, but that is overkill e.g.,
public void add(...) { i1solated { } }

Java approach:

o Use Java’s synchronized statement instead of object-based isolation e.g.,

public void add(...) { synchronized(this) { } }
or equivalently
public synchronized void add(...) { }

e Both HJ and Java programs can use specialized implementations of monitors
available in java.util.concurrent

— ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArraySet

8 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Objects and Locks in Java ---
svnchronized statements and methods

e Every Java object has an associated lock acquired via:
— synchronized statements

— synchronized(foo) { // acquire foo’s lock
/| execute code while holding foo’s lock
} Il release foo’s lock

— synchronized methods

— public synchronized void op1() {// acquire ‘this‘ lock
/| execute method while holding ‘this’ lock
} Il release ‘this’ lock

e Java language does not enforce any relationship between object used for locking and objects accessed
in isolated code

— If same object is used for locking and data access, then the object behaves
like a monitor

e Locking and unlocking are automatic
— Locks are released when a synchronized block exits
e By normal means: end of block reached, return, break

e When an exception is thrown and not caught

9 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

10

Locking guarantees in Java

It is desirable to use java.util.concurrent.atomic and other standard
monitor classes when possible

Locks are needed for more general cases. Basic idea is to implement
synchronized(a) <stmt> as follows:

1. Acquire lock for object a

2. Execute <stmt>

3. Release lock for object a

The responsibility for ensuring that the choice of locks correctly

implements the semantics of monitors/isolated lies with the
programmer.

The main guarantee provided by locks is that only one thread can hold
a given lock at a time, and the thread is blocked when acquiring a lock
if the lock is unavailable.

A
COMP 322, Spring 2015 (V.Sarkar, E.Allen) %g

Java’s Object Locks are Reentrant

* Locks are granted on a per-thread basis
— Called reentrant or recursive locks
— Promotes object-oriented concurrent code

e Asynchronized block means execution of this code requires the current thread to hold this lock
— If it does — fine
— If it doesn’t — then acquire the lock

e Reentrancy means that recursive methods, invocation of super methods, or local callbacks, don’t deadlock
public class Widget {
public synchronized wvoid doSomething() { ... }
}
public class LoggingWidget extends Widget ({
public synchronized void doSomething () {
Logger.log(this + ": calling doSomething()") ;
super.doSomething(); // Doesn't deadlock!

11 COMP 322, Spring 2015 (V.Sarkar, E.Allen) A

Deadlock example with Java
svnchronized statement

e The code below can deadlock if LeftHand () and rightHand () are called concurrently from
different threads

— Because the locks are not acquired in the same order

public class ObviousDeadlock {

public void leftHand() {
synchronized (lockl) {
synchronized (lock2) {
for (int i=0; i<10000; i++)

sum += random.nextInt(100) ;

}
public void rightHand () {

synchronized (lock2) {
synchronized (lockl) ({
for (int i=0; i<10000; i++)

sum += random.nextInt(100) ;

12 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Deadlock avoidance in HJ with object-
based isolation

 HJ implementation ensures that all locks are acquired in the same order

. ==> no deadlock

public class NoDeadlockl {

public void leftHand() {
isolated(lockl, lock2) {
for (int i=0; i<10000; i++)

sum += random.nextInt (100);

}
public void rightHand () {

isolated(lock2,lockl) {
for (int i=0; i<10000; i++)

sum += random.nextInt (100) ;

13 COMP 322, Spring 2015 (V.Sarkar, E.Allen) D

Dynamic Order Deadlocks

* There are even more subtle ways for threads to deadlock due to inconsistent lock ordering

— Consider a method to transfer a balance from one account to another:
public class SubtleDeadlock {

public void transferFunds (Account from,
Account to,
int amount) {
synchronized (from) {
synchronized (to) {
from.subtractFromBalance (amount) ;

to.addToBalance (amount) ;

}

— What if one thread tries to transfer from A to B while another tries to transfer fromBto A ?
Inconsistent lock order again — Deadlock!

14 COMP 322, Spring 2015 (V.Sarkar, E.Allen) 7

Avoiding Dynamic Order Deadlocks

. The solution is to induce a lock ordering

— Here, uses an existing unique numeric key, acctld, to establish an order
public class SafeTransfer {

public void transferFunds (Account from, Account to, int amount) {

Account firstLock, secondLock;
if (fromAccount.acctId == toAccount.acctId)
throw new Exception (“Cannot self-transfer”);
else if (fromAccount.acctId < toAccount.acctId) {
firstLock = fromAccount;
secondLock = toAccount;

}

else {
firstlLock = toAccount;
secondLock = fromAccount;

}

synchronized (firstLock) {
synchronized (secondLock) {
from.subtractFromBalance (amount) ;

to.addToBalance (amount) ;

15

COMP 322, Spring 2015 (V.Sarkar, E.Allen) p:/§

Avoiding Dynamic Order Deadlocks

. The solution is to induce a lock ordering

— Here, uses an existing unique numeric key, acctld, to establish an order
public class SafeTransfer {

public void transferFunds (Account from, Account to, int amount) {

Account firstLock, secondLock;
if (fromAccount.acctId == toAccount.acctId)
throw new Exception (“Cannot self-transfer”);
else if (fromAccount.acctId < toAccount.acctId) {
firstLock = fromAccount;
secondLock = toAccount;

}

else {
firstlLock = toAccount;
secondLock = fromAccount;

}

synchronized (firstLock) {
synchronized (secondLock) {
from.subtractFromBalance (amount) ;

to.addToBalance (amount) ;

16

COMP 322, Spring 2015 (V.Sarkar, E.Allen) p:/§

