
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 26: Introduction to Java Threads &

Synchronized Statement

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 26 23 March 2015

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Solution to Worksheet #24:
Linearizability of method calls on a concurrent object

Is this a linearizable execution for a FIFO queue, q?

2

No! q.enq(x) must precede q.enq(y) in all linear sequences of
method calls invoked on q. It is illegal for the q.deq() operation to
return y.

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Introduction to Java threads:
java.lang.Thread class

• Execution of a Java program begins with an instance of Thread
created by the Java Virtual Machine (JVM) that executes the
program’s main() method.

• Parallelism can be introduced by creating additional instances of
class Thread that execute as parallel threads.

3

A lambda can be
passed as a Runnable

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

start() and join() methods
• A Thread instance starts executing when its start() method

is invoked
— start() can be invoked at most once per Thread instance

– Like actors, except that Java threads don’t process messages
— As with async, the parent thread can immediately move to the next

statement after invoking t.start()

• A t.join() call forces the invoking thread to wait till thread t
completes.
— Lower-level primitive than finish since it only waits for a single thread

rather than a collection of threads
— No restriction on which thread performs a join on which thread, so it

is possible to create a deadlock cycle using join()
– Declaring thread references as final does not help because the

new() and start() operations are separated for threads (unlike
futures, where they are integrated)

4

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Two-way Parallel Array Sum
using Java Threads

5

1. // Start of main thread

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. Thread t1 = new Thread(() -> {

4. // Child task computes sum of lower half of array

5. for(int i=0; i < X.length/2; i++) sum1 += X[i];

6. });

7. t1.start();

8. // Parent task computes sum of upper half of array

9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. // Parent task waits for child task to complete (join)

11. t1.join();

12. return sum1 + sum2;

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Two-way Parallel Array Sum
using HJ-Lib’s finish & async API’s

6

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. finish(() -> {

4. async(() -> {

5. // Child task computes sum of lower half of array

6. for(int i=0; i < X.length/2; i++) sum1 += X[i];

7. });

8. // Parent task computes sum of upper half of array

9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. });

11. // Parent task waits for child task to complete (join)

12. return sum1 + sum2;

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

HJlib runtime uses Java threads as
workers

• HJlib runtime creates a small number of worker threads, typically one per
core

• Workers push async’s/continuations into a logical work queue

• when an async operation is performed

• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle

7

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

How to convert a sequential library to a
monitor in HJ vs. Java?

HJ approach:

• Use object-based isolation to ensure that each call to a public method is isolated on “this” e.g.,

public void add(...) { isolated(this) { } }

• Can also use general isolated statement, but that is overkill e.g.,
public void add(...) { isolated { } }
!

Java approach:
• Use Java’s synchronized statement instead of object-based isolation e.g.,

public void add(...) { synchronized(this) { } }
or equivalently
public synchronized void add(...) { }

• Both HJ and Java programs can use specialized implementations of monitors
available in java.util.concurrent
— ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArraySet

8

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Objects and Locks in Java --- 
synchronized statements and methods

• Every Java object has an associated lock acquired via:
— synchronized statements

– synchronized(foo) { // acquire foo’s lock  
 // execute code while holding foo’s lock 
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock 

 // execute method while holding ‘this’ lock 
} // release ‘this’ lock

• Java language does not enforce any relationship between object used for locking and objects accessed
in isolated code
— If same object is used for locking and data access, then the object behaves

like a monitor
• Locking and unlocking are automatic

— Locks are released when a synchronized block exits
• By normal means: end of block reached, return, break
• When an exception is thrown and not caught

9

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Locking guarantees in Java
• It is desirable to use java.util.concurrent.atomic and other standard

monitor classes when possible
• Locks are needed for more general cases. Basic idea is to implement

synchronized(a) <stmt> as follows:
1. Acquire lock for object a
2. Execute <stmt>
3. Release lock for object a

• The responsibility for ensuring that the choice of locks correctly
implements the semantics of monitors/isolated lies with the
programmer.

• The main guarantee provided by locks is that only one thread can hold
a given lock at a time, and the thread is blocked when acquiring a lock
if the lock is unavailable.

10

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Java’s Object Locks are Reentrant
• Locks are granted on a per-thread basis

— Called reentrant or recursive locks
— Promotes object-oriented concurrent code

• A synchronized block means execution of this code requires the current thread to hold this lock
— If it does — fine
— If it doesn’t — then acquire the lock

• Reentrancy means that recursive methods, invocation of super methods, or local callbacks, don’t deadlock
 public class Widget {
 public synchronized void doSomething() { ... }
 }
 public class LoggingWidget extends Widget {
 public synchronized void doSomething() {
 Logger.log(this + ": calling doSomething()");
 super.doSomething(); // Doesn't deadlock!  

 }  
 }

11

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Deadlock example with Java
synchronized statement

• The code below can deadlock if leftHand() and rightHand() are called concurrently from
different threads
— Because the locks are not acquired in the same order

 public class ObviousDeadlock {
 . . .
 public void leftHand() {
 synchronized(lock1) {
 synchronized(lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 public void rightHand() {
 synchronized(lock2) {
 synchronized(lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

12

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Deadlock avoidance in HJ with object-
based isolation

• HJ implementation ensures that all locks are acquired in the same order

• ==> no deadlock
 public class NoDeadlock1 {
 . . .
 public void leftHand() {
 isolated(lock1, lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);

 }
 }
 public void rightHand() {
 isolated(lock2,lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

13

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Dynamic Order Deadlocks
• There are even more subtle ways for threads to deadlock due to inconsistent lock ordering

— Consider a method to transfer a balance from one account to another:
public class SubtleDeadlock {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 synchronized (from) {
 synchronized (to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }
 }
— What if one thread tries to transfer from A to B while another tries to transfer from B to A ?

Inconsistent lock order again – Deadlock!

14

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering
— Here, uses an existing unique numeric key, acctId, to establish an order

public class SafeTransfer {
 public void transferFunds(Account from, Account to, int amount) {
 Account firstLock, secondLock;  

 if (fromAccount.acctId == toAccount.acctId) 
 throw new Exception(“Cannot self-transfer”); 
 else if (fromAccount.acctId < toAccount.acctId) { 
 firstLock = fromAccount;  
 secondLock = toAccount;  
 }  
 else {  
 firstLock = toAccount;  
 secondLock = fromAccount;  
 }  
 synchronized (firstLock) {

 synchronized (secondLock) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }  

 }

15

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering
— Here, uses an existing unique numeric key, acctId, to establish an order

public class SafeTransfer {
 public void transferFunds(Account from, Account to, int amount) {
 Account firstLock, secondLock;  

 if (fromAccount.acctId == toAccount.acctId) 
 throw new Exception(“Cannot self-transfer”); 
 else if (fromAccount.acctId < toAccount.acctId) { 
 firstLock = fromAccount;  
 secondLock = toAccount;  
 }  
 else {  
 firstLock = toAccount;  
 secondLock = fromAccount;  
 }  
 synchronized (firstLock) {

 synchronized (secondLock) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }  

 }

16

