
COMP 322 Spring 2020

Lab 1: Async-Finish Parallel Programming with Abstract Metrics
Instructor: Dr. Mackale Joyner

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

• Three HJlib APIs: launchHabaneroApp, async, and finish.

• Abstract metrics with calls to doWork().

NOTE: The instructions below are written for Mac OS and Linux computers, but should be easily adaptable
to Windows with minor changes e.g., you may need to use \ instead of / in some commands.

Note that all commands below are CaSe-SeNsItIvE. For example, be sure to use “S20” instead of “s20”.

1 Lab 1 Exercises

1.1 HelloWorld program

The first exercise is to familiarize yourself with the kind of code you will see and be expected to write in your
assignments. The HelloWorldError.java program does not have any interesting parallelism, but introduces
you to the starter set for HJlib, which consists of three method calls1:

• launchHabaneroApp() Launches the fragment of code to be run by the Habanero runtime. All your
code that uses any of the Habanero constructs must be (transitively) nested inside this method call.
For example,

launchHabaneroApp(() -> {S1; ...});

executes S1, ..., within an implicit finish. You are welcome to add finish statements explicitly in your
code in statements S1, While most assignments will not require that you write launchHabaneroApp
explicitly (it will be included in the testing harness), it is good to be aware of.

• async contains the API for executing a Java 8 lambda asynchronously. For example,

async(() -> {S1; ...});

spawns a new child task to execute statements S1, ... asynchronously.

• finish contains the API for executing a Java 8 lambda in a finish scope. For example,

finish(() -> {S1; ...});

executes statements S1, ..., but waits until all (transitively) spawned asyncs in the statements’ scope
have terminated.

Uncomment line 44 in HelloWorldError.java. Compiling with your IDE or mvn clean compile should
give you a compilation error similar to:

1Note that these and other HJlib APIs make extensive use of Java 8 lambda expressions.

1 of 6

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module0.html#launchHabaneroApp-edu.rice.hj.api.HjSuspendable-
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#async-edu.rice.hj.api.HjSuspendable-
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module0.html#finish-edu.rice.hj.api.HjSuspendable-

COMP 322
Spring 2020

Lab 1: Async-Finish Parallel Programming with Abstract Metrics

HelloWorldError.java:[44,53] cannot find symbol

symbol: variable ss

location: class edu.rice.comp322.HelloWorldError

Your task is to fix this error. Replace “ss” by “s” in HelloWorldError.java and rebuild, verifying a successful
compilation.

Next, we can try running the simple HelloWorldError project. From IntelliJ, that should be as simple as
right-clicking on the main method and selecting Run:

We expect this to produce some error output in the console:

HJlib requires what is called a “Java Agent” to be added to the command line when launching programs.
If HJlib discovers during startup that no Java Agent has been provided, it will 1) print the above error
message, and 2) place the needed command-line argument in your clipboard for convenience. In IntelliJ, the
simplest way to resolve this for the HelloWorldError example is through Run → Edit Configurations...

2 of 6

COMP 322
Spring 2020

Lab 1: Async-Finish Parallel Programming with Abstract Metrics

In the popup, you can then paste the -javaagent from the error output into the VM options textbox and
hit OK.

For Windows, the error may not show the -javaagent option in the output. You can paste the following:
-javaagent:"C:\Users\yourusername\.m2\repository\edu\rice\hjlib-cooperative\0.1.13-SNAPSHOT
\hjlib-cooperative-0.1.13-20170111.022154-1.jar"

If you try re-running HelloWorldError, the program should now complete successfully with two prints.

2 Abstract Performance Metrics

While Computation Graphs provide a useful abstraction for reasoning about performance, it is not practical
to build Computation Graphs by hand for large programs. The Habanero-Java (HJ) library used in the
course includes the following utilities to help programmers reason about the CGs for their programs:

• Insertion of calls to doWork(). The programmer can insert a call of the form perf.doWork(N) anywhere
in a step to indicate execution of N application-specific abstract operations. Multiple calls to doWork()

are permitted within the same step. They have the effect of adding to the abstract execution time
of that step. The performance metrics will be the same regardless of which physical machine the HJ
program is executed on, and provides a convenient theoretical way to reason about the parallelism in
your program. However, the abstraction may not be representative of actual performance on a given
machine, and measuring abstract metrics actually slows down your program.

• Printout of abstract metrics. If an HJlib program is executed with a specified option, abstract metrics
are printed at the end of program execution that capture the total number of operations executed
(WORK) and the critical path length (CPL) of the CG generated by the program execution. The
ratio, WORK/CPL is also printed as a measure of ideal parallelism.

3 of 6

COMP 322
Spring 2020

Lab 1: Async-Finish Parallel Programming with Abstract Metrics

3 ReciprocalArraySum Program

We will now work with the simple two-way parallel array sum program introduced in the Demonstration
Video for Topic 1.1. Edit the ReciprocalArraySum.java program provided in your svn repository. There
are TODOs in the ReciprocalArraySum.java file guiding you on where to place your edits.

• The goal of this exercise is to create an array of N random doubles, and compute the sum of their
reciprocals in several ways, then comparing the benefits and disadvantages of each. As with Home-
work 1, performance in this lab will be measured using abstract metrics that accumulate WORK and
CPL values based on calls to doWork(1). The ways in which you will implement reciprocal sum are
listed below:

– Sequentially in method seqArraySum().

– In parallel using two asyncs in method parArraySum 2asyncs(). It is important to add the calls
to doWork() as seen in the seqArraySum() method to keep track of abstract metrics. For the
default input size, our solution achieved an ideal parallelism of just under 2.

– In parallel using four asyncs in method parArraySum 4asyncs(). You are essentially creating
a version of parArraySum 2asyncs that uses 4 asyncs instead of 2. Think about the following
question: How do you want to split up the work among the 4 tasks? For the default input size,
our solution achieved an ideal parallelism of just under 4.

– Lastly, in parallel using eight asyncs in method parArraySum 8asyncs(). You are essentially
creating a version of parArraySum 2asyncs that uses 8 asyncs instead of 2. Think about the
following questions: Do you really want to have to manually create 8 asyncs manually? Is there a
better way you could write this function? Remember that copying and pasting code is generally
discouraged. For the default input size, our solution achieved an ideal parallelism of just under 8.

• Compile and run the program in IntelliJ to ensure that the program runs correctly without your
changes. Follow the instructions for “Step 4: Your first project” in https://wiki.rice.edu/confluence/

pages/viewpage.action?pageId=14433124. If you’re not using IntelliJ, you can do this by running
the mvn clean compile exec:exec -Preciprocal command as specified in the README file.

Be sure you run the Lab1CorrectnessTest file, not the ReciprocalArraySum file.

• Compare the abstract metric results and the actual speedup metric results and be able to explain the
discrepancies before leaving lab. Note that the actual speedups depend on the input array size, which
is 106 for today’s lab, as well as the characteristics of your laptop.

3.1 Submitting to your SVN repo

SVN supports committing changes from your local repo back to the SVN cloud. This can be down in IntelliJ
or on the command line. If it’s the first time you’re committing the fine, you need to first perform an svn

add. To commit from the command line, this is possible using the svn commit command from your project
directory:

$ svn commit -m "your commit msg here"

Where “your commit msg here” can be any informational message you like.

From IntelliJ commits can be done through the VCS ¿ Commit Changes... selection:

4 of 6

https://www.youtube.com/watch?v=pANGm8KqOG0&feature=youtu.be
https://www.youtube.com/watch?v=pANGm8KqOG0&feature=youtu.be
https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124
https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124

COMP 322
Spring 2020

Lab 1: Async-Finish Parallel Programming with Abstract Metrics

The pop-up window will then allow you to fill in a commit message and preview the differences between the
versions of the code in the cloud and on your laptop. After providing a commit message, hit Commit (and
feel free to ignore any warnings for now).

You can confirm that your commit went through using your web browser. For example, by navigating to:

https://svn.rice.edu/r/comp322/turnin/S20/NETID/lab_1/src/main/java/edu/rice/comp322/ReciprocalArraySum.java

with NETID replaced by your Net ID, you should see an updated version of ReciprocalArraySum.java with
your changes.

5 of 6

COMP 322
Spring 2020

Lab 1: Async-Finish Parallel Programming with Abstract Metrics

While the concept of SVN may be new to you, using svn commit to save your changes to the SVN server can
be very useful. Frequently committing your code protects you from an accidental deletion or modification
of your source blowing away days worth of work, as all changes will be saved in SVN. All of your commits
to SVN are also visible to the teaching staff, and when asking for help on an assignment it can sometimes
be simple to just point them to your code in SVN to ensure everyone is looking at the same version.

If you’re having trouble running svn in IntelliJ on Windows, see if the following link helps to fix your problem:
https://intellij-support.jetbrains.com/hc/en-us/community/posts/206320249-Checking-out-project-from-svn-Cannot-run-program-svn-.
Try the uncheck the ”use the command line” checkbox suggestion.

4 Demonstrating and submitting in your lab work

Show your work to an instructor or TA to get credit for this lab (as in COMP 215). They will want to see
your updated files committed to Subversion in your web browser, and the passing/failing unit tests on your
laptop. Labs must be checked off by a TA by the following Wednesday at 11:59pm.

6 of 6

https://intellij-support.jetbrains.com/hc/en-us/community/posts/206320249-Checking-out-project-from-svn-Cannot-run-program-svn-

	Lab 1 Exercises
	HelloWorld program

	Abstract Performance Metrics
	ReciprocalArraySum Program
	Submitting to your SVN repo

	Demonstrating and submitting in your lab work

