
COMP 322: Fundamentals of Parallel Programming

Lecture 23: Actors (continued)

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 23 March 2021

http://comp322.rice.edu

COMP 322, Spring 2021 (M.Joyner)

Worksheet #22: Analyzing Parallelism in an Actor Pipeline
Consider a three-stage pipeline of actors (as in slide 5), set up so that P0.nextStage = P1, P1.nextStage = P2, and
P2.nextStage = null. The process() method for each actor is shown below.

Assume that 100 non-null messages are sent to actor P0 after all three actors are started, followed by a null
message. What will the total WORK and CPL be for this execution? Recall that each actor has a sequential
thread.

1. protected void process(final Object msg) {
2. if (msg == null) {
3. exit();
4. } else {
5. doWork(1); // unit work
6. }
7. if (nextStage != null) {
8. nextStage.send(msg);
9. }
10. }

 

2

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

...

WORK = 300, CPL = 102

COMP 322, Spring 2021 (M.Joyner)

Announcements

•Quiz for Unit 5 is due today at 11:59pm
•Lab 5 is due tomorrow at 12pm (noon)
•Lab 6 is this week (run on local machine)

3

COMP 322, Spring 2021 (M.Joyner)

Pipeline and Actors

Pipelined Parallelism:
! Each stage can be represented as an actor
! Stages need to ensure ordering of messages

while processing them
! Slowest stage is a throughput bottleneck

4

COMP 322, Spring 2021 (M.Joyner)

Motivation for Parallelizing Actors

Pipelined Parallelism:
! Reduce effects of slowest stage by introducing

task parallelism.
! Increases the throughput.

5

COMP 322, Spring 2021 (M.Joyner)

Parallelism within an Actor’s process() method
! Use finish construct within process() body and spawn child tasks
! Take care not to introduce data races on local state!

1.class ParallelActor extends Actor<Message> {

2. void process(Message msg) {
3. finish(() -> {
4. async(() -> { S1; });
5. async(() -> { S2; });
6. async(() -> { S3; });
7. });
8. }
9. }

6

COMP 322, Spring 2021 (M.Joyner)

Example of Parallelizing Actors
1. class ArraySumActor extends Actor<Object> {
2. private double resultSoFar = 0;
3. @Override
4. protected void process(final Object theMsg) {
5. if (theMsg != null) {
6. final double[] dataArray = (double[]) theMsg;
7. final double localRes = doComputation(dataArray);
8. resultSoFar += localRes;
9. } else { ... }
10. }
11. private double doComputation(final double[] dataArray) {
12. final double[] localSum = new double[2];
13. finish(() -> { // Two-way parallel sum snippet
14. final int length = dataArray.length;
15. final int limit1 = length / 2;
16. async(() -> {
17. localSum[0] = doComputation(dataArray, 0, limit1);
18. });
19. localSum[1] = doComputation(dataArray, limit1, length);
20. });
21. return localSum[0] + localSum[1];
22. }
23. }

7

COMP 322, Spring 2021 (M.Joyner)

Parallelizing Actors in HJ-Lib
! Two techniques:
–Use finish construct to wrap asyncs in message processing body
•Finish ensures all spawned asyncs complete before next message returning
from process()

–Allow escaping asyncs inside process() method
•WAIT! Won't escaping asyncs violate the one-message-at-a-time rule in
actors
•Solution: Use pause and resume

8

COMP 322, Spring 2021 (M.Joyner)

State Diagram for Extended Actors with Pause-Resume

! Paused state: actor will not process subsequent
messages until it is resumed

! Resume actor when it is safe to process the next
message

! Messages can accumulate in mailbox when actor is in
PAUSED state

NOTE: Calls to exit(), pause(), resume() only impact the
processing of the next message, and not the
processing of the current message. These calls should
just be viewed as “state change” operations.

9

COMP 322, Spring 2021 (M.Joyner)

Actors: pause() operation
! Is a non-blocking operation, i.e. allows the next statement to be executed.

! Calling pause() when the actor is already paused is a no-op.

! Once paused, the state of the actor changes and it will no longer process
messages sent (i.e. call process(message)) to it until it is resumed.

10

COMP 322, Spring 2021 (M.Joyner)

Actors: resume() operation
! Is a non-blocking operation.

! Calling resume() when the actor is not paused is an error, the HJ runtime
will throw a runtime exception.

! Moves the actor back to the STARTED state
! the actor runtime spawns a new asynchronous thread to start processing

messages from its mailbox.

11

COMP 322, Spring 2021 (M.Joyner)

Parallelizing Actors in HJ-Lib
Allow escaping asyncs inside process():

1. class ParallelActor2 extends Actor<Message> {

2. void process(Message msg) {
3. pause(); // process() will not be called until a resume() occurs
4. async(() -> { S1; }); // escaping async
5. async(() -> { S2; }); // escaping async
6. async(() -> {
7. // This async must be completed before next message
8. // Can also use async-await if you want S3 to wait for S1 & S2
9. S3;
10. resume();
11. });
12. }
13. }

12

COMP 322, Spring 2021 (M.Joyner)

Worksheet #23: Synchronized Reply using Pause/Resume
Actors don’t normally require synchronization with other actors. However, sometimes we might want actors
to be in synch with one another. Using a DDF and pause/resume, ensure that the SynchSenderActor doesn’t
process the next message until notified by the SyncReplyActor that the message was received and
processed.

13

1.class SynchSenderActor
2. extends Actor<Message> {
3. private Actor otherActor = …
4. void process(Msg msg) {
5. ...
6. DDF<T> ddf = newDDF();
7. otherActor.send(ddf);
8. println("Response received");
9. ...
10.} }

1.class SynchReplyActor
2. extends Actor<DDF> {
3. void process(DDF msg) {
4. ...
5. println("Message received");
6. // process message
7. T responseResult = ...;
8. ...
9.} }

