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Worksheet #22: Analyzing Parallelism in an Actor Pipeline
Consider a three-stage pipeline of actors (as in slide 5), set up so that P0.nextStage = P1, P1.nextStage = P2, and 
P2.nextStage = null.  The process() method for each actor is shown below.   

Assume that 100 non-null messages are sent to actor P0 after all three actors are started, followed by a null 
message.  What will the total WORK and CPL be for this execution?  Recall that each actor has a sequential 
thread. 

1.      protected void process(final Object msg) {
2.            if (msg == null) {
3.                exit();
4.            } else {
5.                doWork(1); // unit work
6.            }
7.            if (nextStage != null) {
8.                nextStage.send(msg);
9.            }
10.        }
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Figure 5.6 Pipeline processing 10 data elements.
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WORK = 300, CPL = 102
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Announcements

•Quiz for Unit 5 is due today at 11:59pm 
•Lab 5 is due tomorrow at 12pm (noon) 
•Lab 6 is this week (run on local machine)
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Pipeline and Actors

Pipelined Parallelism:  
! Each stage can be represented as an actor 
! Stages need to ensure ordering of messages 

while processing them 
! Slowest stage is a throughput bottleneck
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Motivation for Parallelizing Actors

Pipelined Parallelism:  
! Reduce effects of slowest stage by introducing 

task parallelism.  
! Increases the throughput.
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Parallelism within an Actor’s process() method
! Use finish construct within process() body and spawn child tasks 
! Take care not to introduce data races on local state! 

1.class ParallelActor extends Actor<Message> {

2.    void process(Message msg) { 
3.     finish(() -> {
4.        async(() -> { S1; });
5.        async(() -> { S2; });
6.        async(() -> { S3; });
7.     }); 
8.   } 
9. }
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Example of Parallelizing Actors
1. class ArraySumActor extends Actor<Object> {
2.    private double resultSoFar = 0;
3.    @Override
4.    protected void process(final Object theMsg) {
5.      if (theMsg != null) {
6.        final double[] dataArray = (double[]) theMsg;
7.        final double localRes = doComputation(dataArray);
8.        resultSoFar += localRes;
9.      } else { ... }
10.    }
11.    private double doComputation(final double[] dataArray) {
12.      final double[] localSum = new double[2];
13.      finish(() -> { // Two-way parallel sum snippet
14.        final int length = dataArray.length;
15.        final int limit1 = length / 2;
16.        async(() -> {
17.          localSum[0] = doComputation(dataArray, 0, limit1);
18.        });
19.        localSum[1] = doComputation(dataArray, limit1, length);
20.      });
21.      return localSum[0] + localSum[1];
22.    }
23.  }

7



COMP 322, Spring 2021 (M.Joyner)

Parallelizing Actors in HJ-Lib
! Two techniques: 
–Use finish construct to wrap asyncs in message processing body 
•Finish ensures all spawned asyncs complete before next message returning 
from process() 

–Allow escaping asyncs inside process() method 
•WAIT! Won't escaping asyncs violate the one-message-at-a-time rule in 
actors 
•Solution: Use pause and resume
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State Diagram for Extended Actors with Pause-Resume

! Paused state: actor will not process subsequent 
messages until it is resumed 

! Resume actor when it is safe to process the next 
message 

! Messages can accumulate in mailbox when actor is in 
PAUSED state 

NOTE: Calls to exit(), pause(), resume() only impact the 
processing of the next message, and not the 
processing of the current message.  These calls should 
just be viewed as “state change” operations.
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Actors: pause() operation
! Is a non-blocking operation, i.e. allows the next statement to be executed. 

! Calling pause() when the actor is already paused is a no-op. 

! Once paused, the state of the actor changes and it will no longer process 
messages sent (i.e. call process(message)) to it until it is resumed.
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Actors: resume() operation
! Is a non-blocking operation. 

! Calling resume() when the actor is not paused is an error, the HJ runtime 
will throw a runtime exception. 

! Moves the actor back to the STARTED state 
! the actor runtime spawns a new asynchronous thread to start processing 

messages from its mailbox.
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Parallelizing Actors in HJ-Lib
Allow escaping asyncs inside process(): 

1. class ParallelActor2 extends Actor<Message> {

2.     void process(Message msg) { 
3.     pause(); // process() will not be called until a resume() occurs
4.     async(() -> { S1; }); // escaping async
5.     async(() -> { S2; }); // escaping async
6.     async(() -> { 
7.       // This async must be completed before next message
8.       // Can also use async-await if you want S3 to wait for S1 & S2
9.       S3; 
10.       resume(); 
11.     });
12.   } 
13. }
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Worksheet #23: Synchronized Reply using Pause/Resume
Actors don’t normally require synchronization with other actors.  However, sometimes we might want actors 
to be in synch with one another.  Using a DDF and pause/resume, ensure that the SynchSenderActor doesn’t 
process the next message until notified by the SyncReplyActor that the message was received and 
processed.
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1.class SynchSenderActor 
2.    extends Actor<Message> {
3.  private Actor otherActor = …
4.  void process(Msg msg) {
5.    ...
6.    DDF<T> ddf = newDDF();
7.    otherActor.send(ddf);
8.    println("Response received");
9.    ...
10.} }

1.class SynchReplyActor 
2.    extends Actor<DDF> {
3.  void process(DDF msg) {
4.    ...
5.    println("Message received");
6.    // process message
7.    T responseResult = ...;
8.    ...
9.} }


