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0 Course Organization

The desired learning outcomes from the course fall into three major areas, that we refer to as modules:

• Module 1: Parallelism — creation and coordination of parallelism (async, finish), abstract performance
metrics (work, critical paths), Amdahl’s Law, weak vs. strong scaling, data races and determinism, data
race avoidance (immutability, futures, accumulators, dataflow), deadlock avoidance, abstract vs. real
performance (granularity, scalability), collective and point-to-point synchronization (phasers, barriers),
parallel algorithms, systolic algorithms.

• Module 2: Concurrency — critical sections, atomicity, isolation, high level data races, nondeterminism,
linearizability, liveness/progress guarantees, actors, request-response parallelism, Java Concurrency,
locks, condition variables, semaphores, memory consistency models.

• Module 3: Locality and Distribution — memory hierarchies, locality, cache affinity, data movement,
message-passing (MPI), communication overheads (bandwidth, latency), MapReduce, accelerators,
GPGPUs, CUDA, OpenCL.

Each module is further divided into units, and each unit consists of a set of topics. This document consists
of lecture notes for Module 1. The section numbering in the document follows the unit.topic format. Thus,
Section 1.2 in the document covers topic 2 in unit 1. The same numbering convention is used for the videos
hosted on edX.

1 Task-level Parallelism

1.1 Task Creation and Termination (Async, Finish)

To introduce you to a concrete example of parallel programming, let us first consider the following sequential
algorithm for computing the sum of the elements of an array of numbers, X:

Algorithm 1: Sequential ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
sum← 0;
for i← 0 to X.length− 1 do

sum← sum+X[i];

return sum;

This algorithm is simple to understand since it sums the elements of X sequentially from left to right.
However, we could have obtained the same algebraic result by summing the elements from right to left
instead. This over-specification of the ordering of operations in sequential programs has been classically
referred to as the Von Neumann bottleneck [2]1. The left-to-right evaluation order in Algorithm 1 can be
seen in the computation graph shown in Figure 1. We will study computation graphs formally later in the
course. For now, think of each node or vertex (denoted by a circle) as an operation in the program and each
edge (denoted by an arrow) as an ordering constraint between the operations that it connects, due to the
flow of the output from the first operation to the input of the second operation. It is easy to see that the
computation graph in Figure 1 is sequential because the edges enforce a linear order among all nodes in the
graph.

How can we go about converting Algorithm 1 to a parallel program? The answer depends on the parallel
programming constructs that are available for our use. We will start by learning task-parallel constructs. To

1These lecture notes include citation such as [2] as references for optional further reading.
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Figure 1: Computation graph for Algorithm 1 (Sequential ArraySum)

//Task T0(Parent) 

finish {   //Begin finish 

  async  

    STMT1; //T1(Child) 

  //Continuation  

  STMT2;   //T0 

} //Continuation //End finish 

STMT3;     //T0 

STMT2 

async 

STMT1 

terminate 
wait 

T1 T0 

STMT3 

Figure 2: A example code schema with async and finish constructs

understand the concept of tasks informally, let’s use the word, task, to denote a sequential subcomputation
of a parallel program. A task can be made as small or as large as needed e.g., it can be a single statement
or can span multiple procedure calls. Program execution is assumed to start as a single “main program”
task, but tasks can create new tasks leading to a tree of tasks defined by parent-child relations arising from
task creation, in which the main program task is the root. In addition to task creation, we will also need a
construct for task termination, i.e., a construct that can enable certain computations to wait until certain
other tasks have terminated. With these goals in mind, we introduce two fundamental constructs for task
parallelism, async and finish, in the following sections2.

1.1.1 Async notation for Task Creation

The first parallel programming construct that we will learn is called async. In pseudocode notation, “async
〈stmt1〉”, causes the parent task (i.e., the task executing the async statement to create a new child task to
execute the body of the async, 〈stmt1〉, asynchronously (i.e., before, after, or in parallel) with the remainder
of the parent task. The notation, 〈stmt〉, refers to any legal program statement e.g., if-then-else, for-loop,
method call, or a block enclosed in { } braces. (The use of angle brackets in “〈stmt〉” follows a standard
notational convention to denote units of a program. They are unrelated to the < and > comparison operators
used in many programming languages.) Figure 2 illustrates this concept by showing a code schema in which
the parent task, T0, uses an async construct to create a child task T1. Thus, STMT1 in task T1 can potentially
execute in parallel with STMT2 in task T0.

async is a powerful primitive because it can be used to enable any statement to execute as a parallel task,
including for-loop iterations and method calls. Listing 1 shows some example usages of async. These
examples are illustrative of logical parallelism, since it may not be efficient to create separate tasks for all
the parallelism created in these examples. Later in the course, you will learn the impact of overheads in
determining what subset of logical parallelism can be useful for a given platform.

2These constructs have some similarities to the “fork” and “join” constructs available in many languages, including Java’s
ForkJoin framework (which we will learn later in the course), but there are notable differences.
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1 // Example 1 : execute i t e r a t i o n s o f a counted f o r loop in p a r a l l e l
2 // (we w i l l l a t e r s ee f o r a l l l oops as a shorthand f o r t h i s common case )
3 for ( int i i = 0 ; i < A. length ; i i ++) {
4 f ina l int i = i i ; // i i s a f i n a l v a r i ab l e
5 async { A[ i ] = B[ i ] + C[ i ] ; } // value o f i i s copied on entry to
6 }
7
8 // Example 2 : execute i t e r a t i o n s o f a whi l e loop in p a r a l l e l
9 pp = f i r s t ;

10 while ( pp != null ) {
11 T p = pp ; // p i s an e f f e c t i v e l y f i n a l v a r i ab l e
12 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async
13 pp = pp . next ;
14 }
15
16 // Example 3 : Example 2 r ewr i t t en as a r e c u r s i v e method
17 stat ic void proce s s (T p) { // parameter p i s an e f f e c t i v e l y f i n a l v a r i a b l e
18 i f ( p != null ) {
19 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async
20 proce s s (p . next ) ;
21 }
22 }
23
24 // Example 4 : execute method c a l l s in p a r a l l e l
25 async { l e f t s = quickSort ( l e f t ) ; }
26 async { r i g h t s = quickSort ( r i g h t ) ; }

Listing 1: Example usages of async

All algorithm and programming examples in the module handouts should be treated as “pseudocode”, since
they are written for human readability with notations that are more abstract than the actual APIs that you
will use for programming projects in COMP 322.

In Example 1 in Listing 1, the for loop sequentially increments index variable i, but all instances of the loop
body can logically execute in parallel because of the async statement. The pattern of parallelizing counted
for-loops in Example 1 occurs so commonly in practice that many parallel languages include a specialized
construct for this case, that may be given a name such as foreach, forall or forasync.

In Example 2 in Listing 1, the async is used to parallelize computations in the body of a pointer-chasing
while loop. Though the sequence of p = p.next statements is executed sequentially in the parent task, all
dynamic instances of the remainder of the loop body can logically execute in parallel with each other.

Example 3 in Listing 1 shows the computation in Example 2 rewritten as a static void recursive method.
You should first convince yourself that the computations in Examples 2 and 3 perform the same operations
by omitting the async keyword in each case, and comparing the resulting sequential versions.

Example 4 shows the use of async to execute two method calls as parallel tasks (as was done in the two-way
parallel sum algorithm).

As these examples show, a parallel program can create an unbounded number of tasks at runtime. The
parallel runtime system is responsible for scheduling these tasks on a fixed number of processors. It does
so by creating a fixed number of worker threads as shown in Figure 3, typically one worker per processor
core. Worker threads are allocated by the Operating System (OS). By creating one thread per core, we limit
the role of the OS in task scheduling to that of binding threads to cores at the start of program execution,
and let the parallel runtime system take over from that point onwards. These workers repeatedly pull work
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(async’s & continuations) 
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Local variables are 
private to each task 

Static & instance fields are shared among tasks 

Figure 3: Scheduling an parallel program on a fixed number of workers. (Figure adapted from [6].)

1 // Rule 1 : a ch i l d async may read the value o f any outer f i n a l l o c a l var
2 f ina l int i 1 = 1 ;
3 async { . . . = i 1 ; /∗ i 1=1 ∗/ }
4
5 // Rule 2 : a ch i l d async may a l s o read any ” e f f e c t i v e l y f i n a l ” outer l o c a l var
6 int i 2 = 2 ; // i 2=2 i s copied on entry in to the async l i k e a method param
7 async { . . . = i 2 ; /∗ i 2=2∗/}
8 // i 2 cannot be modi f i ed again , i f i t i s ” e f f e c t i v e l y f i n a l ”
9

10 // Rule 3 : a ch i l d async i s not permitted to modify an outer l o c a l var
11 int i 3 ;
12 async { i 3 = . . . ; /∗ ERROR ∗/}

Listing 2: Rules for accessing local variables across async’s

from a shared work queue when they are idle, and push work on the queue when they generate more work.
The work queue entries can include async’s and continuations. An async is the creation of a new task, such
as T1 in Figure 2. A continuation3 represents a potential suspension point for a task, which (as shown in
in Figure 2) can include the point after an async creation as well as the point following the end of a finish
scope. Continuations are also referred to as task-switching points, because they are program points at which
a worker may switch execution between different tasks. A key motivation for this separation between tasks
and threads is that it would be prohibitively expensive to create a new OS-level worker thread for each async

task that is created in the program.

An important point to note in Figure 3 is that local variables are private to each task, whereas static
and instance fields are shared among tasks. This is similar to the rule for accessing local variables and
static/instance fields within and across methods or lambda expressions in Java. Listing 2 summarizes the
rules for accessing local variables across async boundaries. For convenience, as shown in Rules 1 and 2, a
child async is allowed to access a local variable declared in an outer async or method by simply capturing
the value of the local variable when the async task is created (analogous to capturing the values of local
variables in parameters at the start of a method call or in the body of a lambda expression). Note that a
child async is not permitted to modify a local variable declared in an outer scope (Rule 3). If needed, you
can work around the Rule 3 constraint by replacing the local variable by a static or instance field, since fields
can be shared among tasks.

3This use of “continuation” is related to, but different from, continuations in functional programming languages.
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1.1.2 Finish notation for Task Termination

The next parallel programming construct that we will learn as a complement to async is called finish. In
pseudocode notation, “finish 〈stmt〉” causes the parent task to execute 〈stmt〉, which includes the possible
creation of async tasks, and then wait until all async tasks created within 〈stmt〉 have completed before the
parent task can proceed to the statement following the finish. Async and finish statements may also be
arbitrarily nested.

Thus, the finish statement in Figure 2 is used by task T0 to ensure that child task T1 has completed executing
STMT1 before T0 executes STMT3. This may be necessary if STMT3 in Figure 2 used a value computed by STMT1.
If T1 created a child async task, T2 (a “grandchild” of T0), T0 will wait for both T1 and T2 to complete in
the finish scope before executing STMT3.

The waiting at the end of a finish statement is also referred to as a synchronization. The nested structure
of finish ensures that no deadlock cycle can be created between two tasks such that each is waiting on the
other due to end-finish operations. (A deadlock cycle refers to a situation where two tasks can be blocked
indefinitely because each is waiting for the other to complete some operation.) We also observe that each
dynamic instance TA of an async task has a unique dynamic Immediately Enclosing Finish (IEF) instance
F of a finish statement during program execution, where F is the innermost finish containing TA. Like
async, finish is a powerful primitive because it can be wrapped around any statement thereby supporting
modularity in parallel programming.

If you want to convert a sequential program into a parallel program, one approach is to insert async state-
ments at points where the parallelism is desired, and then insert finish statements to ensure that the parallel
version produces the same result as the sequential version. Listing 3 extends the first two code examples
from Listing 1 to show the sequential version, an incorrect parallel version with only async’s inserted, and
a correct parallel version with both async’s and finish’s inserted.

The source of errors in the incorrect parallel versions are data races, which are notoriously hard to debug.
As you will learn later in the course, a data race occurs if two parallel computations access the same shared
location in an “interfering” manner i.e., such that at least one of the accesses is a write (so called because the
effect of the accesses depends on the outcome of the “race” between them to determine which one completes
first). Data races form a class of bugs that are specific to parallel programming.

async and finish statements also jointly define what statements can potentially be executed in parallel
with each other. Consider the finish-async nesting structure shown in Figure 4. It reveals which pairs of
statements can potentially execute in parallel with each other. For example, task A2 can potentially execute
in parallel with tasks A3 and A4 since async A2 was launched before entering the finish F2, which is the
Immediately Enclosing Finish for A3 and A4. However, Part 3 of Task A0 cannot execute in parallel with
tasks A3 and A4 since it is performed after finish F2 is completed.

1.1.3 Array Sum with two-way parallelism

We can use async and finish to obtain a simple parallel program for computing an array sum as shown in
Algorithm 2. The computation graph structure for Algorithm 2 is shown in Figure 5. Note that it differs
from Figure 1 since there is no edge or sequence of edges connecting Tasks T2 and T3. This indicates that
tasks T2 and T3 can execute in parallel with each other; for example, if your computer has two processor
cores, T2 and T3 can be executed on two different processors at the same time. We will see much richer
examples of parallel programs using async, finish and other constructs during the course.

1.2 Computation Graphs

A Computation Graph (CG) is a formal structure that captures the meaning of a parallel program’s execution.
When you learned sequential programming, you were taught that a program’s execution could be understood
as a sequence of operations that occur in a well-defined total order, such as the left-to-right evaluation order
for expressions. Since operations in a parallel program do not occur in a fixed order, some other abstraction
is needed to understand the execution of parallel programs. Computation Graphs address this need by
focusing on the extensions required to model parallelism as a partial order. Specifically, a Computation
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1 // Example 1 : Sequent i a l v e r s i on
2 for ( int i = 0 ; i < A. length ; i++) A[ i ] = B[ i ] + C[ i ] ;
3 System . out . p r i n t l n (A [ 0 ] ) ;
4
5 // Example 1 : I n c o r r e c t p a r a l l e l v e r s i on
6 for ( int i i = 0 ; i < A. length ; i i ++) {
7 f ina l int i = i i ; // i i s a f i n a l v a r i ab l e
8 async { A[ i ] = B[ i ] + C[ i ] ; } // value o f i i s copied on entry to
9 }

10 System . out . p r i n t l n (A [ 0 ] ) ;
11
12 // Example 1 : Correct p a r a l l e l v e r s i on
13 f in ish {
14 for ( int i i = 0 ; i < A. length ; i i ++) {
15 f ina l int i = i i ; // i i s a f i n a l v a r i ab l e
16 async { A[ i ] = B[ i ] + C[ i ] ; } // value o f i i s copied on entry to
17 }
18 }
19 System . out . p r i n t l n (A [ 0 ] ) ;
20
21 // Example 2 : Sequent i a l v e r s i on
22 p = f i r s t ;
23 while ( p != null ) {
24 p . x = p . y + p . z ; p = p . next ;
25 }
26 System . out . p r i n t l n ( f i r s t . x ) ;
27
28 // Example 2 : I n c o r r e c t p a r a l l e l v e r s i on
29 pp = f i r s t ;
30 while ( pp != null ) {
31 T p = pp ; // p i s an e f f e c t i v e l y f i n a l v a r i ab l e
32 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async
33 pp = pp . next ;
34 }
35 System . out . p r i n t l n ( f i r s t . x ) ;
36
37 // Example 2 : Correct p a r a l l e l v e r s i on
38 pp = f i r s t ;
39 f in ish while ( pp != null ) {
40 T p = pp ; // p i s an e f f e c t i v e l y f i n a l v a r i ab l e
41 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async
42 pp = pp . next ;
43 }
44 System . out . p r i n t l n ( f i r s t . x ) ;

Listing 3: Incorrect and correct parallelization with async and finish
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1 f in ish { // F1
2 // Part 1 o f Task A0
3 async {A1 ; async A2;}
4 f in ish { // F2
5 // Part 2 o f Task A0
6 async A3 ;
7 async A4 ;
8 }
9 // Part 3 o f Task A0

10 }

Listing 4: Example usage of async and finish

Task A4 

finish 

async async 

Task A0 (Part 3) 

Task A0 (Part 2) 

finish 
Task A0 (Part 1) 

async 

Task A1 

async 

Task A2 
Task A3 

Figure 4: Finish-async nesting structure for code fragment in Listing 4

T1 

T2 

T1 

T3 

// Continuation of Task T1 

// Start of Task T1 (main program) 

Figure 5: Computation graph for code example in Algorithm 5 (Two-way Parallel ArraySum)
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Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task T1 (main program)

sum1← 0; sum2← 0;
// Compute sum1 (lower half) and sum2 (upper half) in parallel.

finish{
async{

// Task T2

for i← 0 to X.length/2− 1 do
sum1← sum1 +X[i];

};
async{

// Task T3

for i← X.length/2 to X.length− 1 do
sum2← sum2 +X[i];

};
};
// Task T1 waits for Tasks T2 and T3 to complete

// Continuation of Task T1

sum← sum1 + sum2;
return sum;

Graph consists of:

• A set of nodes, where each node represents a step consisting of an arbitrary sequential computation.
For programs with async and finish constructs, a task’s execution can be divided into steps by using
continuations to define the boundary points. Recall from Section 1.1.1 that a continuation point in a
task is the point after an async creation or a point following the end of a finish scope. It is acceptable
to introduce finer-grained steps in the CG if so desired i.e., to split a step into smaller steps. The
key constraint is that a step should not contain any parallelism or synchronization i.e., a continuation
point should not be internal to a step.

• A set of directed edges that represent ordering constraints among steps. For async–finish programs,
it is useful to partition the edges into three cases [6]:

1. Continue edges that capture sequencing of steps within a task — all steps within the same task
are connected by a chain of continue edges.

2. Spawn edges that connect parent tasks to child async tasks. When an async is created, a spawn
edge is inserted between the step that ends with the async in the parent task and the step that
starts the async body in the new child task.

3. Join edges that connect descendant tasks to their Immediately Enclosing Finish (IEF) operations.
When an async terminates, a join edge is inserted from the last step in the async to the step in
the ancestor task that follows the IEF operation.

Consider the example program shown in Listing 5 and its Computation Graph shown in Figure 6. There are
6 tasks in the CG, T1 to T6. This example uses finer-grained steps than needed, since some steps (e.g., v1
and v2) could have have been combined into a single step. In general, the CG grows as a program executes
and a complete CG is only available when the entire program has terminated. The three classes of edges
(continue, spawn, join) are shown in Figure 6. Even though they arise from different constructs, they all
have the same effect viz., to enforce an ordering among the steps as dictated by the program.
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In any execution of the CG on a parallel machine, a basic rule that must be obeyed is that a successor node
B of an edge (A,B) can only execute after its predecessor node A has completed. This relationship between
nodes A and B is referred to as a dependence because the execution of node B depends on the execution of
node A having completed. In general, node Y depends on node X if there is a path of directed edges from
X to Y in the CG. Therefore, dependence is a transitive relation: if B depends on A and C depends on B,
then C must depend on A. The CG can be used to determine if two nodes may execute in parallel with each
other. For example, an examination of Figure 6 shows that all of nodes v3 . . . v15 can potentially execute
in parallel with node v16 because there is no directed path in the CG from v16 to any node in v3 . . . v15 or
vice versa.

It is also important to observe that the CG in Figure 6 is acyclic i.e., it is not possible to start at a node
and trace a cycle by following directed edges that leads back to the same node. An important property of
CGs is that all CGs are directed acyclic graphs, also referred to as dags. As a result, the terms “computation
graph” and “computation dag” are often used interchangeably.

1.3 Ideal Parallelism

In addition to providing the dependence structure of a parallel program, Computation Graphs can also be
used to reason about the ideal parallelism of a parallel program as follows:

• Assume that the execution time, time(N), is known for each node N in the CG. Since N represents an
uninterrupted sequential computation, it is assumed that time(N) does not depend on how the CG is
scheduled on a parallel machine. (This is an idealized assumption because the execution time of many
operations, especially memory accesses, can depend on when and where the operations are performed
in a real computer system.)

• Define WORK(G) to be the sum of the execution times of the nodes in CG G,

WORK(G) =
∑

node N in G

time(N)

Thus, WORK(G) represents the total amount of work to be done in CG G.

• Define CPL(G) to be the length of the longest path in G, when adding up the execution times of all
nodes in the path. There may be more than one path with this same length. All such paths are referred
to as critical paths, so CPL stands for critical path length.

Consider again the CG, G, in Figure 6. For simplicity, we assume that all nodes have the same execution
time, time(N) = 1. It has a total of 23 nodes, so WORK(G) = 23. In addition the longest path consists of
17 nodes as follows, so CPL(G) = 17:

v1→ v2→ v3→ v6→ v7→ v8→ v10→ v11→ v12→ v13→ v14→ v18→ v19→ v20→ v21→ v22→ v23

Given the above definitions of WORK and CPL, we can define the ideal parallelism of Computation Graph
G as the ratio, WORK(G)/CPL(G). The ideal parallelism can be viewed as the maximum performance
improvement factor due to parallelism that can be obtained for computation graph G, even if we ideally had
an unbounded number of processors. It is important to note that ideal parallelism is independent of the
number of processors that the program executes on, and only depends on the computation graph

1.3.1 Abstract Performance Metrics

While Computation Graphs provide a useful abstraction for reasoning about performance, it is not practical
to build Computation Graphs by hand for large programs. The Habanero-Java (HJ) library used in the
course includes the following utilities to help programmers reason about the CGs for their programs:

• Insertion of calls to doWork(). The programmer can insert a call of the form perf.doWork(N) any-
where in a step to indicate execution of N application-specific abstract operations e.g., floating-point
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1 // Task T1
2 v1 ; v2 ;
3 f in ish {
4 async {
5 // Task T2
6 v3 ;
7 f in ish {
8 async { v4 ; v5 ; } // Task T3
9 v6 ;

10 async { v7 ; v8 ; } // Task T4
11 v9 ;
12 } // f i n i s h
13 v10 ; v11 ;
14 async { v12 ; v13 ; v14 ; } // Task T5
15 v15 ;
16 }
17 v16 ; v17 ;
18 } // f i n i s h
19 v18 ; v19 ;
20 f in ish {
21 async { v20 ; v21 ; v22 ; }
22 }
23 v23 ;

Listing 5: Example program

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

Γ1

Γ2

Γ3 Γ4 Γ5

Γ6

Figure 6: Computation Graph G for example program in Listing 5
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operations, comparison operations, stencil operations, or any other data structure operations. Multiple
calls to perf.doWork() are permitted within the same step. They have the effect of adding to the
abstract execution time of that step. The main advantage of using abstract execution times is that the
performance metrics will be the same regardless of which physical machine the HJ program is executed
on. The main disadvantage is that the abstraction may not be representative of actual performance
on a given machine.

• Printout of abstract metrics. If an HJlib program is executed with a specified option, abstract metrics
are printed at the end of program execution that capture the total number of operations executed
(WORK) and the critical path length (CPL) of the CG generated by the program execution. The
ratio, WORK/CPL is also printed as a measure of ideal parallelism.

• Visualization of computation graph. A tool called HJ-viz is also provided that enables you to see an
image of the computation graph of a program executed with abstract performance metrics.

1.4 Multiprocessor Scheduling

Now, let us discuss the execution of CG G on an idealized parallel machine with P processors. It is idealized
because all processors are assumed to be identical, and the execution time of a node is assumed to be
independent of which processor it executes on. Consider all legal schedules of G on P processors. A legal
schedule is one that obeys the dependence constraints in the CG, such that for every edge (A,B) the scheduled
guarantees that B is only scheduled after A completes. Let tP denote the execution time of a legal schedule.
While different schedules may have different execution times, they must all satisfy the following two lower
bounds:

1. Capacity bound: tp ≥ WORK(G)/P . It is not possible for a schedule to complete in time less than
WORK(G)/P because that’s how long it would take if all the work was perfectly divided among P
processors.

2. Critical path bound: tp ≥ CPL(G). It is not possible for a schedule to complete in time less than
CPL(G) because any legal schedule must obey the chain of dependences that form a critical path.
Note that the critical path bound does not depend on P .

Putting these two lower bounds together, we can conclude that tp ≥ max(WORK(G)/P,CPL(G)). Thus,
if the observed parallel execution time tP is larger than expected, you can investigate the problem by
determining if the capacity bound or the critical path bound is limiting its performance.

It is also useful to reason about the upper bounds for tP . To do so, we have to make some assumption about
the “reasonableness” of the scheduler. For example, an unreasonable scheduler may choose to keep processors
idle for an unbounded number of time slots (perhaps motivated by locality considerations), thereby making
tP arbitrarily large. The assumption made in the following analysis is that all schedulers under consideration
are “greedy” i.e., they will never keep a processor idle when there’s a node that is available for execution.

We can now state the following properties for tP , when obtained by greedy schedulers:

• t1 = WORK(G). Any greedy scheduler executing on 1 processor will simply execute all nodes in the
CG in some order, thereby ensuring that the 1-processor execution time equals the total work in the
CG.

• t∞ = CPL(G). Any greedy scheduler executing with an unbounded (infinite) number of processors must
complete its execution with time = CPL(G), since all nodes can be scheduled as early as possible.

• tP ≤ t1/P + t∞ = WORK(G)/P + CPL(G). This is a classic result due to Graham [5]. An informal
sketch of the proof is as follows. At any given time in the schedule, we can declare the time slot
to be complete if all P processors are busy at that time and incomplete otherwise. The number of
complete time slots must add up to at most t1/P since each such time slot performs P units of work.
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Figure 7: Illustration of Amdahl’s Law (source: http://en.wikipedia.org/wiki/Amdahl’s law)

In addition, the number of incomplete time slots must add up to at most t∞ since each such time slot
must advance 1 time unit on a critical path. Putting them together results in the upper bound shown
above. Combining it with the lower bound, you can see that:

max(WORK(G)/P,CPL(G)) ≤ tP ≤WORK(G)/P + CPL(G)

It is interesting to compare the lower and upper bounds above. You can observe that they contain
the max and sum of the same two terms, WORK(G)/P and CPL(G). Since x + y ≤ 2 max(x, y), the
lower and upper bounds vary by at most a factor of 2×. Further, if one term dominates the other e.g.,
x� y, then the two bounds will be very close to each other.

1.5 Parallel Speedup and Amdahl’s Law

Given definitions for t1 and tP , the speedup for a given schedule of a computation graph on P processors
is defined as Speedup(P) = t1/tP . Speedup(P) is the factor by which the use of P processors speeds up
execution time relative to 1 processor, for a fixed input size. For ideal executions without overhead, 1 ≤
Speedup(P) ≤ P . The term linear speedup is used for a program when Speedup(P) = k × P as P varies, for
some constant k, 0 < k < 1.

We can now summarize a simple observation made by Gene Amdahl in 1967 [1]: if q ≤ 1 is the fraction
of WORK in a parallel program that must be executed sequentially, then the best speedup that can be
obtained for that program, even with an unbounded number of processors, is Speedup(P) ≤ 1/q. As in the
Computation Graph model studied earlier, this observation assumes that all processors are uniform i.e., they
all execute at the same speed.

This observation follows directly from a lower bound on parallel execution time that you are familiar with,
namely tP ≥ CPL(G), where tP is the execution time of computation graph G on P processors and CPL
is the critical path length of graph G. If fraction q of WORK(G) is sequential, it must be the case that
CPL(G) ≥ q ×WORK(G). Therefore, Speedup(P) = t1/tP must be ≤ WORK(G)/(q ×WORK(G)) = 1/q
since t1 = WORK(G) for greedy schedulers.
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The consequence of Amdahl’s Law is illustrated in Figure 7. The x-axis shows the number of processors
increasing in powers of 2 on a log scale, and the y-axis represents speedup obtained for different values of
q. Specifically, each curve represents a different value for the parallel portion, (1− q), assuming that all the
non-sequential work can be perfectly parallelized. Even when the parallel portion is as high as 95%, the
maximum speedup we can obtain is 20× since the sequential portion is 5%. The ideal case of q = 0 and a
parallel portion of 100% is not shown in the figure, but would correspond to the y = x line which would
appear to be an exponential curve since the x-axis is plotted on a log scale.

Amdahl’s Law reminds us to watch out for sequential bottlenecks both when designing parallel algorithms
and when implementing programs on real machines. While it may paint a bleak picture of the utility of
adding more processors to a parallel computing, it has also been observed that increasing the data size for a
parallel program can reduce the sequential portion [7] thereby making it profitable to utilize more processors.
The ability to increase speedup by increasing the number of processors for a fixed input size (fixed WORK)
is referred to as strong scaling, and the ability to increase speedup by increasing the input size (increasing
WORK) is referred to as weak scaling.
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2 Functional Parallelism and Determinism

2.1 Future Tasks and Functional Parallelism

2.1.1 Tasks with Return Values

The async construct introduced in previous sections provided the ability to execute any statement as a
parallel task, and the finish construct provided a mechanism to await termination of all tasks created
within its scope. async task creation leads to a natural parent-child relation among tasks, e.g., if task TA

creates async task TB , then TA is the parent of TB and TB is the child of TA. Thus, an ancestor task, TA,
can use a finish statement to ensure that it is safe to read values computed by all descendant tasks, TD

enclosed in the scope of the finish. These values are communicated from TD to TA via shared variables,
which (in the case of Java tasks) must be an instance field, static field, or array element.

However, there are many cases where it is desirable for a task to explicitly wait for the return value from a
specific single task, rather than all descendant tasks in a finish scope. To do so, it is necessary to extend
the regular async construct with return values, and to create a container (proxy) for the return value which
is done using future objects as follows:

• A variable of type future<T>4 is a reference to a future object i.e., a container for a return value of
type T from an async task.

• There are exactly two operations that can be performed on a variable, V1, of type future<T1>, assuming
that type T2 is a subtype of, or the same as, type T1:

1. Assignment — variable V1 can be assigned a reference to an async with return value type T2 as
described below, or V1 can be assigned the value of a variable V2 with type future<T2>.

2. Blocking read — the operation, V1.get(), waits until the async referred to by V1 has completed,
and then propagates the return value of the async to the caller as a value of type T1. This
semantics also avoids the possibility of a race condition on the return value.

• An async with a return value is called a future task, and can be defined by introducing two extensions
to regular async’s as follows:

1. The body of the async must start with a type declaration, async<T1>, in which the type of the
async’s return value, T1, immediately follows the async keyword.

2. The body itself must consist of a compound statement enclosed in { } braces, dynamically termi-
nating with a return statement. It is important to note that the purpose of this return statement
is to communicate the return value of the enclosing async and not the enclosing method.

Listing 6 revisits the two-way parallel array sum example discussed earlier, but using future tasks instead of
regular async’s. There are two variables of type future<int> in this example, sum1 and sum2 Each future
task can potentially execute in parallel with it parent, just like regular async’s. However, unlike regular
async’s, there is no finish construct needed for this example since the parent task T1, performs sum1.get()
to wait for future task T2 and sum2.get() to wait for future task T3.

In addition to waiting for completion, the get() operations are also used to access the return values of the
future tasks. This is an elegant capability because it obviates the need for shared fields or shared arrays,
and avoids the possibility of race conditions on those shared variables. Notice the three declarations for
variables sum in lines 4, 9, and 14. Each occurrence of sum is local to a task, and there’s no possibility of
race conditions on these local variables or the return values from the future tasks. These properties have
historically made future tasks well suited to express parallelism in functional languages [8].

4“future” is a pseudocode keyword, and will need be replaced by the appropriate data type in real code.
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1 // Parent Task T1 (main program )
2 // Compute sum1 ( lower h a l f ) and sum2 ( upper h a l f ) in p a r a l l e l
3 future<int> sum1 = async<int> { // Future Task T2
4 int sum = 0 ;
5 for ( int i=0 ; i < X. length /2 ; i++) sum += X[ i ] ;
6 return sum ;
7 } ; //NOTE: semico lon needed to terminate ass ignment to sum1
8 future<int> sum2 = async<int> { // Future Task T3
9 int sum = 0 ;

10 for ( int i=X. l ength /2 ; i < X. length ; i++) sum += X[ i ] ;
11 return sum ;
12 } ; //NOTE: semico lon needed to terminate ass ignment to sum2
13 //Task T1 waits f o r Tasks T2 and T3 to complete
14 int sum = sum1 . get ( ) + sum2 . get ( ) ;

Listing 6: Two-way Parallel ArraySum using Future Tasks

2.1.2 Computation Graph Extensions for Future Tasks

Future tasks can be accommodated very naturally in the Computation Graph (CG) abstraction introduced
in Section 1.2. The main CG extensions required to accommodate the get() operations are as follows:

• A get() operation is a new kind of continuation operation, since it can involve a blocking operation.
Thus, get() operations can only occur on the boundaries of steps. To fully realize this constraint,
it may be necessary to split a statement containing one or more get() operations into multiple sub-
statements such that a get() occurs in a sub-statement by itself.

• A spawn edge connects the parent task to a child future task, just as with regular async’s.

• When a future task, TF , terminates, a join edge is inserted from the last step in TF to the step in the
ancestor task that follows its Immediately Enclosing Finish (IEF) operation, as with regular async’s.
In addition, a join edge is also inserted from TF ’s last step to every step that follows a get() operation
on the future task. Note that new get() operations may be encountered even after TF has terminated.

To compute the computation graph for the example in Listing 6, we will need to split the statement in line 14
into the following sub-statements:

14a int temp1 = sum1.get();

14b int temp2 = sum2.get();

14c int sum = temp1 + temp2;

The resulting CG is shown in Figure 8. Note that the end of each step in a future task has two outgoing
join edges in this example, one to the get() operation and one to the implicit end-finish operation in the
main program.

2.1.3 Why should future references be effectively final?

In this section, we elaborate on an important programming principle for futures, viz., all variables containing
references to future objects should be effectively final (either declared final or participating in a single
assignment), which means that the variable cannot be modified after initialization. To motivate this rule,
consider the buggy program example in Listing 7. WARNING: this is an example of bad parallel programming
practice that you should not attempt!

This program declares two static non-final future reference fields, f1 and f2, in lines 1 and 2 and initializes
them to null. The main() programs then creates two future tasks, T1 and T2, in lines 5 and 6 and assigns
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Stmts 
1, 2 

Stmt 
14a 

Stmt 
14b 

Stmt 
14c 

Start-
Finish 
(main) 

End-
Finish 
(main) 

Stmts 
3 -- 7 

Stmts 
8 -- 12 

Continue edge Join edge Spawn edge 

Figure 8: Computation Graph G for example parallel program in code:TwoParArraySumFuture, with state-
ment 14 split into statements 14a, 14b, 14c

them to f1 and f2 respectively. Task T1 uses a “spin loop” in line 10 to wait for f2 to become non-null, and
task T2 does the same in line 15 to wait for f1 to become non-null. After exiting the spin loop, each task
performs a get() operation on the other thereby attempting to create a deadlock cycle in the computation
graph. Fortunately, the rule that all variables containing references to future objects should be effectively
final can avoid this situation.

2.1.4 Future Tasks with a void return type

A key distinction made thus far between future tasks and regular async’s is that future tasks have return
values but regular async’s do not. However, there is a construct that represents a hybrid of these two task
variants, namely a future task, TV , with a void return type. This is analogous to Java methods with void

return types. In this case, a get() operation performed on TV has the effect of waiting for TV to complete,
but no return value is communicated from TV .

Figure 9 shows Computation Graph G3 that cannot be generated using only async and finish constructs,
and Listing 8 shows the code that can be used to generate G3 using future tasks. This code uses futures
with a void return type, and provides a systematic way of converting any CG into a task-parallel program
using futures.

2.2 Memoization

The basic idea of memoization is to remember results of function calls f(x) as follows:

1. Create a data structure that stores the set {(x1, y1 = f(x1)), (x2, y2 = f(x2)), . . .} for each call f(xi)
that returns yi.

2. Look up data structure when processing calls of the form f(x′) when x′ equals one of the xi inputs for
which f(xi) has already been computed.

The memoization pattern lends itself easily to parallelization using futures by modifying the memoized data
structure to store {(x1, y1 = future(f(x1))), (x2, y2 = future(f(x2))), . . .}. The lookup operation can then be
extended with a get() operation on the future value if a future has already been created for the result of a
given input.
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1 stat ic future<int> f 1=null ;
2 stat ic future<int> f 2=null ;
3
4 stat ic void main ( St r ing [ ] a rgs ) {
5 f1 = async<int> {return a1 ( ) ; } ; // Task T1
6 f2 = async<int> {return a2 ( ) ; } ; // Task T2
7 }
8
9 int a1 ( ) {

10 while ( f 2 == null ) ; // sp in loop
11 return f 2 . get ( ) ; // T1 waits f o r T2
12 }
13
14 int a2 ( ) {
15 while ( f 1 == null ) ; // sp in loop
16 return f 1 . get ( ) ; // T2 waits f o r T1
17 }

Listing 7: Buggy Use of Future Tasks due to missing final declarations

A 

B C 

D E 

F 

Figure 9: Computation Graph G3

1 // NOTE: return statement i s op t i ona l when return type i s void
2 future<void> A = async<void> { . . . ; return ;}
3 future<void> B = async<void> { A. get ( ) ; . . . ; return ;}
4 future<void> C = async<void> { A. get ( ) ; . . . ; return ;}
5 future<void> D = async<void> { B. get ( ) ; C. get ( ) ; . . . ; return ;}
6 future<void> E = async<void> { C. get ( ) ; . . . ; return ;}
7 future<void> F = async<void> { D. get ( ) ; E . get ( ) ; . . . ; return ;}

Listing 8: Task-parallel code with futures to generate Computation Graph G3 from Figure 9
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// Reduction operators

enum Operator {SUM, PROD, MIN, MAX, CUSTOM}

// Predefined reduction

accum(Operator op, Class dataType); // Constructor

void accum.put(Number datum); // Remit a datum

void accum.put(int datum);

void accum.put(double datum);

Number accum.get(); // Retrieve the result

// User-defined reduction

interface reducible<T> {

void reduce(T arg); // Define reduction

T identity(); // Define identity

}

accum<T>(Operator op, Class dataType); // Constructor

void accum.put(T datum); // Remit a datum

T accum.customGet(); // Retrieve the result

Figure 10: Example of accumulator API

2.3 Finish Accumulators

In this section, we introduce the programming interface and semantics of finish accumulators. Finish accu-
mulators support parallel reductions, which represent a common pattern for computing the aggregation of
an associative and commutative operation, such as summation, across multiple pieces of data supplied by
parallel tasks. There are two logical operations, put, to remit a datum and get, to retrieve the result from
a well-defined synchronization (end-finish) point. Section 2.3.1 describes the details of these operations,
and Section 2.3.2 describes how user-defined reductions are supported in finish accumulators.

2.3.1 Accumulator Constructs

Figure 10 shows an example of a finish-accumulator programming interface. The operations that a task, Ti,
can perform on accumulator, ac, are defined as follows.

• new: When task Ti performs a “ac = new accumulator(op, dataType);” statement, it creates a
new accumulator, ac, on which Ti is registered as the owner task. Here, op is the reduction operator
that the accumulator will perform, and dataType is the type of the data upon which the accumulator
operates. Currently supported predefined reduction operators include SUM, PROD, MIN, and MAX; CUSTOM
is used to specify user-defined reductions.

• put: When task Ti performs an “ac.put(datum);” operation on accumulator ac, it sends datum to
ac for the accumulation, and the accumulated value becomes available at a later end-finish point. The
runtime system throws an exception if a put() operation is attempted by a task that is not the owner
and does not belong to a finish scope that is associated with the accumulator. When a task performs
multiple put() operations on the same accumulator, they are treated as separate contributions to the
reduction.

• get: When task Ti performs an “ac.get()” operation on accumulator ac with predefined reduction
operators, it obtains a Number object containing the accumulated result. Likewise “ac.customGet()”
on ac with a CUSTOM operator returns a user-defined T object with the accumulated result. When no
put is performed on the accumulator, get returns the identity element for the operator, e.g., 0 for SUM,
1 for PROD, MAX VALUE/MIN VALUE for MIN/MAX, and user-defined identity for CUSTOM.

• Summary of access rules: The owner task of accumulator ac is allowed to perform put/get op-
erations on ac and associate ac with any finish scope in the task. Non-owner tasks are allowed to
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ac = new accum(...);
async { ... ac.put(foo()); }  // T1
finish (ac) {
    async {  // T2
        finish {
            async {  // T3
                ac.put(bar());
            }
            ac.put(baz());
        }
        ac.put(qux());
    }
    ac.put(quux());
}
n = ac.get();

ac.put(...);

ac.put(...);

ac.put(...);

ac.put(...);

ac.get(); ac.put(...);ac.put(...);ac.put(...);

: async : end-finish sync

ac = new accum(...);

finish (ac) {

}

/* ERROR */

T0

T2

T3

T1

Figure 11: Finish accumulator example with three tasks that perform a correct reduction and one that
throws an exception

access ac only within finish scopes with which ac is associated. To ensure determinism, the accumu-
lated result only becomes visible at the end-finish synchronization point of an associated finish;
get operations within a finish scope return the same value as the result at the beginning of the
finish scope. Note that put operations performed by the owner outside associated finish scopes are
immediately reflected in any subsequent get operations since those results are deterministic.

In contrast to traditional reduction implementations, the put() and get() operations are separate, and
reduction results are not visible until the end-finish point.

To associate a finish statement with multiple accumulators, Towner can perform a special finish statement
of the form, “finish (ac1, ac2, · · · , acn)〈stmt〉”. Note that finish (ac) becomes a no-op if ac is already
associated with an outer finish scope.

Figure 11 shows an example where four tasks T0, T1, T2, and T3 access a finish accumulator ac. As described
earlier, the put operation by T1 throws an exception due to nondeterminism since it is not the owner and
was created outside the finish scope associated with accumulator ac. Note that the inner finish scope
has no impact on the reduction of ac since ac is associated only with the outer finish. All put operations
by T0, T2, and T3 are reflected in ac at the end-finish synchronization of the outer finish, and the result
is obtained by T0’s get operation.

2.3.2 User-defined Reductions

User-defined reductions are also supported in finish accumulators, and its usage consists of these three steps:
1) specify CUSTOM and reducible.class as the accumulator’s operator and type,
2) define a class that implements the reducible interface,
3) pass the implementing class to the accumulator as a type parameter.

Figure 12 shows an example of a user-defined reduction. Class Coord contains two double fields, x and y,
and the goal of the reduction is to find the furthest point from the origin among all the points submitted to
the accumulator. The reduce method computes the distance of a given point from the origin, and updates
x and y if arg has a further distance than the current point in the accumulator.

2.4 Map Reduce

Data structures based on key-value pairs are used by a wide range of data analysis algorithms, including
web search and statistical analyses. In Java, these data structures are often implemented as instances of the
Map interface. An important constraint imposed on sets of key-value pairs is that no key occurs more than
once, thereby ensuring that each key can map to at most one value. Thus, a mathematical abstraction of a
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1: void foo() {

2: accum<Coord> ac = new accum<Coord>(Operation.CUSTOM,

3: reducible.class);

4: finish(ac) {

5: forasync (point [j] : [1:n]) {

6: while(check(j)) {

7: ac.put(getCoordinate(j));

8: } } }

9: Coord c = ac.customGet();

10: System.out.println("Furthest: " + c.x + ", " + c.y);

11: }

12:

13: class Coord implements reducible<Coord> {

14: public double x, y;

15: public Coord(double x0, double y0) {

16: x = x0; y = y0;

17: }

18: public Coord identity(); {

19: return new Coord(0.0, 0.0);

20: }

21: public void reduce(Coord arg) {

22: if (sq(x) + sq(y) < sq(arg.x) + sq(arg.y)) {

23: x = arg.x; y = arg.y;

24: } }

25: private double sq(double v) { return v * v; }

26: }

Figure 12: User-defined reduction example

Map data structure is as a set of pairs, S = {(k1, v1), . . . , (kn, vn)}, such that each (ki, vi) pair consists of a
key, ki, and a value, vi and ki 6= kj for any i 6= j.

Many data analysis algorithm can be specified as sequences of map and reduce operations on sets of key-
value pairs. For a given key-value pair, (ki, vi), a map function f generates a sets of output key-value pairs,
f(ki, vi) = {(k1, v1), . . . , (km, vm)}. The kj keys can be different from the ki key in the input of the map
function. When applied to a set of key-value pairs, the map function results in the union of the output set
generated from each input key-value pair as follows:

f(S) =
⋃

(ki,vi)∈S

f(ki, vi)

f(S) is referred to as a set of intermediate key-value pairs because it will serve as an input for a reduce
operation, g. Note that it is possible for f(S) to contain multiple key-value pairs with the same key. The
reduce operation groups together intermediate key-value pairs, {(k, vj)} with the sam key k, and generates
a reduced key-value pair, (k, v), for each such k, using a reduce function g on all v′j values with the same
intermediate key k′. Therefore g(f(S)) is guaranteed to satisfy the unique-key property.

Listing 9 shows the pseudocode for one possible implementation of map-reduce operations using finish and
async primitives. The basic idea is to complete all operations in the map phase before any operation in the
reduce phase starts. Alternate implementations are possible that expose more parallelism.

As an example, Listing 10 shows how the WordCount problem can be solved using map and reduce operations
on sets of key-value pairs. All map operations in step a) (line 4) can execute in parallel with only local data
accesses, making the map step highly amenable to parallelization. Step b) (line 5) can involve a major
reshuffle of data as all key-value pairs with the same key are grouped (gathered) together. Finally, step c)
(line 6) performs a standard reduction algorithm for all values with the same key.
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1 f in ish { // map phase
2 for each ( ki , v i ) pa i r in input s e t S
3 async compute f ( ki , v i ) and append output to f (S ) ; // map operat i on
4 }
5 f in ish { // reduce phase
6 for each key k ’ in in t e rmed ia t e s e t f (S)
7 async { // reduce operat i on
8 temp = id en t i t y ;
9 f o r each value v ’ ’ such that ( k ’ , v ’ ’ ) i s in f (S) {

10 temp = g ( temp , v ’ ’ ) ;
11 }
12 append (k ’ , temp) to output set , g ( f (S ) ;
13 }
14 }

Listing 9: Pseudocode for one possible implementation of map-reduce operations using finish and async
primitives

1 Input : s e t o f words
2 Output : s e t o f (word , count ) pa i r s
3 Algorithm :
4 a ) For each input word W, emit (W, 1) as a key−value pa i r (map s tep ) .
5 b) Group toge the r a l l key−value pa i r s with the same key ( in t e rmed ia t e
6 key−value pa i r s ) .
7 c ) Perform a sum reduct i on on a l l va lue s with the same key ( reduce s tep ) .

Listing 10: Computing Wordcount using map and reduce operations on sets of key-value pairs
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1 // Sequent i a l v e r s i on
2 for ( p = f i r s t ; p != null ; p = p . next ) p . x = p . y + p . z ;
3 for ( p = f i r s t ; p != null ; p = p . next ) sum += p . x ;
4
5 // I n c o r r e c t p a r a l l e l v e r s i on
6 for ( p = f i r s t ; p != null ; p = p . next )
7 async p . x = p . y + p . z ;
8 for ( p = f i r s t ; p != null ; p = p . next )
9 sum += p . x ;

Listing 11: Sequential and incorrect parallel versions of example program

2.5 Data Races

2.5.1 What are Data Races?

The fundamental primitives for task creation (async) and termination (finish) that you have learned thus far
are very powerful, and can be used to create a wide range of parallel programs. You will now learn about a
pernicious source of errors in parallel programs called data races, and how to avoid them.

Consider the example program shown in Listing 11. The parallel version contains an error because the writes
to instances of p.x in line 7 can potentially execute in parallel with the reads of instances of p.x in line 9.
This can be confirmed by building a computation graph for the program and observing that there is no chain
of dependence edges from step instances of line 7 to step instances of line 9. As a result, it is unclear whether
a read in line 9 will receive an older value of p.x or the value written in line 7. This kind of situation, where
the outcome depends on the relative completion times of two events, is called a race condition. When the
race condition applies to read and write accesses on a shared location, it is called a data race. A shared
location must be a static field, instance field or array element, since it is not possible for interfering accesses
to occur in parallel on a local variable in a method.

Data races are a challenging source of errors in parallel programming, since it is usually impossible to
guarantee that all possible orderings of the accesses to a location will be encountered during program testing.
Regardless of how many tests you write, so long as there is one ordering that yields the correct answer it
is always possible that the correct ordering in encountered when testing your program and an incorrect
ordering is encountered when the program executes in a production setting. For example, while testing the
program, it is possible that the task scheduler executes all the async tasks in line 7 of Listing 11 before
executing the continuation starting at line 8. In this case, the program will appear to be correct during test,
but will have a latent error that could be manifest at any arbitrary time in the future.

Formally, a data race occurs on location L in a program execution with computation graph CG if there exist
steps S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1 i.e., there is no path of dependence edges
from S1 to S2 or from S2 to S1 in CG, and

2. both S1 and S2 read or write L, and at least one of the accesses is a write.

Programs that are guaranteed to never exhibit a data race are said to to be data-race-free. It is also common
to refer to programs that may exhibit data races as “racy”.

There are a number of interesting observations that follow from the above definition of a data race:

1. Immutability property: there cannot be a data race on shared immutable data. Recall that shared data
in a parallel Habanero-Java program consists of static fields, instance fields, and array elements. An
immutable location, Li, is one that is only written during initialization, and can only be read after
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1 f in ish {
2 St r ing s1 = ”XYZ” ;
3 async { St r ing s2 = s1 . toLowerCase ( ) ; . . . }
4 System . out . p r i n t l n ( s1 ) ;
5 }

Listing 12: Example of immutable string operations in a parallel program

initialization. In this case, there cannot be a data race on Li because there will only be one step that
writes to Li in CG, and all steps that read from L must follow the write. This property applies by
definition to static and non-static final fields. It also applies to instances of any immutable class e.g.,
java.lang.String.

2. Single-task ownership property: there cannot be a data race on a location that is only read or written
by a single task. Let us say that step Si in CG owns location L if it performs a read or write access on
L. If step Si belongs to Task Tj , we can also say that Task Tj owns L when executing Si. (Later in
the course, it will be useful to distinguish between read ownership and write ownership.) Consider a
location L that is only owned by steps that belong to the same task, Tj . Since all steps in Task Tj must
be connected by continue edges in CG, all reads and writes to L must be ordered by the dependences
in CG. Therefore, no data race is possible on location L.

3. Ownership-transfer property: there cannot be a data race on a location if all steps that read or write
it are totally ordered in CG. The single-task-ownership property can be generalized to the case when
all steps that read or write a location L are totally ordered by dependences in CG, even if the steps
belong to different tasks i.e., for any two steps Si and Sj that read or write L, it must be the case
that there is a path of dependence edges from Si to Sj or from Sj to Si. In this case, no data race
is possible on location L. We can think of the ownership of L being “transferred” from one step to
another, even across task boundaries, as execution follows the path of dependence edges.

4. Local-variable ownership property: there cannot be a data race on a local variable. If L is a local
variable, it can only be written by the task in which it is declared (L’s owner). Though it may be read
by a descendant task, the “copy-in” semantics for local variables (Rule 2 in Listing 2 of Section 1.1.1)
ensures that the value of the local variable is copied on async creation thus ensuring that there is no
race condition between the read access in the descendant task and the write access in L’s owner.

2.5.2 Avoiding Data Races

The four observations in Section 2.5.1 directly lead to the identification of programming tips and best
practices to avoid data races. There is considerable effort under way right now in the research community
to provide programming language support for these best practices, but until they enter the mainstream it is
your responsibility as a programmer to follow these tips on avoiding data races:

1. Immutability tip: Use immutable objects and arrays as far as possible. Sometimes this may require
making copies of objects and arrays instead of just modifying a single field or array element. Depending
on the algorithm used, the overhead of copying could be acceptable or prohibitive. For example, copying
has a small constant factor impact in the Parallel Quicksort algorithm.

Consider the example program in Listing 12. The parent task initializes s1 to the string, "XYZ" in
line 2, creates a child task in line 3, and prints out s1 in line 4. Even though the child task invokes
the toLowerCase() method on s1 in line 3, there is no data race between line 3 and the parent task’s
print statement in line 4 because toLowerCase() returns a new copy of the string with the lower-case
conversion instead of attempting to update the original version.
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1 f in ish { // Task T1
2 int [ ] A = new int [ n ] ; // A i s owned by T1
3 // . . . i n i t i a l i z e array A . . .
4 // c r e a t e a copy o f array A in B
5 int [ ] B = new int [A. l ength ] ; System . arraycopy (A, 0 ,B, 0 ,A. l ength ) ;
6 async { // Task T2 now owns B
7 int sum = computeSum(B, 0 ,B. length −1); // Modi f i e s B
8 System . out . p r i n t l n ( ”sum = ” + sum ) ;
9 }

10 // . . . update Array A . . .
11 System . out . p r i n t l n ( Arrays . t oS t r i ng (A) ) ; // pr in ted by task T1
12 }

Listing 13: Example of single-task ownership

2. Single-task ownership tip: If an object or array needs to be written multiple times after initialization,
then try and restrict its ownership to a single task. This will entail making copies when sharing the
object or array with other tasks. As in the Immutability tip, it depends on the algorithm whether the
copying overhead can be acceptable or prohibitive.

In the example in Listing 13, the parent Task T1 allocates and initializes array A in lines 2 and 3, and
creates an async child Task T2 to compute its sum in line 6. Task T2 calls the computeSum() method
that actually modifies its input array. To avoid a data race, Task T1 acts as the owner of array A and
creates a copy of A in array B in lines 4 and 5/ Task T2 becomes the owner of B, while Task T1 remains
the owner of A thereby ensuring that each array is owned by a single task.

3. Ownership-transfer tip: If an object or array needs to be written multiple times after initialization and
also accessed by multiple tasks, then try and ensure that all the steps that read or write a location L
in the object/array are totally ordered by dependences in CG. Ownership transfer is even necessary
to support single-task ownership. In Listing 13, since Task T1 initializes array B as a copy of array A,
T1 is the original owner of A. The ownership of B is then transferred from T1 to T2 when Task T2 is
created with the async statement.

4. Local-variable tip: You do not need to worry about data races on local variables, since they are not
possible. However, local variables in Java are restricted to contain primitive data types (such as int)
and references to objects and arrays. In the case of object/array references, be aware that there may
be a data race on the underlying object even if there is no data race on the local variable that refers
to (points to) the object.

You will learn additional mechanisms for avoiding data races later in the course, when you study the future,
phaser, accumulator, isolated and actor constructs.

2.6 Functional and Structural Determinism

A computation is said to be functionally deterministic if it always computes the same answer, when given
the same inputs. By default, any sequential computation is expected to be deterministic with respect to
its inputs; if the computation interacts with the environment (e.g., a GUI event such as a mouse click, or
a system call like System.nanoTime()) then the values returned by the environment are also considered to
be inputs to the computation. Further, a computation is said to be structurally deterministic if it always
computes the same computation graph, when given the same inputs.

The presence of data races often leads to functional and/or structural nondeterminism because a parallel
program with data races may exhibit different behaviors for the same input, depending on the relative
scheduling and timing of memory accesses involved in a data race. In general, the absence of data races
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1 p . x = 0 ; q = p ;
2 async p . x = 1 ; // Task T1
3 async p . x = 2 ; // Task T2
4 async { // Task T3
5 System . out . p r i n t l n ( ” F i r s t read = ” + p . x ) ;
6 System . out . p r i n t l n ( ”Second read = ” + q . x ) ;
7 System . out . p r i n t l n ( ”Third read = ” + p . x ) ;
8 }
9 async { // Task T4

10 System . out . p r i n t l n ( ” F i r s t read = ” + p . x ) ;
11 System . out . p r i n t l n ( ”Second read = ” + p . x ) ;
12 System . out . p r i n t l n ( ”Third read = ” + p . x ) ;
13 }

Listing 14: Example of a parallel program with data races

is not sufficient to guarantee determinism. However, the parallel constructs introduced in this module
(“Module 1: Determinism”) were carefully selected to ensure the following Determinism Property:

If a parallel program is written using the constructs introduced in Module 1 and is guaranteed to
never exhibit a data race, then it must be both functionally and structurally deterministic.

Note that the determinism property states that all data-race-free programs written using the constructs
introduced in Module 1 are guaranteed to be deterministic, but it does not imply that all racy programs are
non-deterministic.

The determinism property is a powerful semantic guarantee since the constructs introduced in Module 1
span a wide range of parallel programming primitives that include async, finish, finish accumulators,
futures, data-driven tasks (async await), forall, barriers, phasers, and phaser accumulators. The notable
exceptions are critical sections, isolated statements, and actors, all of which will be covered in Module 2
(“Concurrency”).

2.6.1 Optional topic: Memory Models and assumptions that can be made in the presence of
Data Races

Since the current state-of-the-art lacks a fool-proof approach for avoiding data races, this section briefly
summarizes what assumptions can be made for parallel programs that may contain data races.

A memory consistency model, or memory model, is the part of a programming language specification that
defines what write values a read may see in the presence of data races. Consider the example program in
Listing 14. It exhibits multiple data races since location p.x can potentially be written in parallel by Tasks
T1 and T2 and read in parallel by Tasks T3 and T4. T3 and T4 each read and print the value of p.x three
times. (Note that q.x and p.x both refer to the same location.) It is the job of the memory model to specify
what outputs are legally permitted by the programming language.

There is a wide spectrum of memory models that have been proposed in the literature. We briefly summarize
three models for now, and defer discussion of a fourth model, the Java Memory Model, to later in the course:

1. Sequential Consistency: The Sequential Consistency (SC) memory model was introduced by Leslie
Lamport in 1979 [9] and builds on a simple but strong rule viz., all steps should observe writes to all
locations in the same order. Thus, the SC memory model will not permit Task T3 to print “0, 1, 2”
and Task T4 to print “0, 2, 1”.

While the SC model may be intuitive for expert system programmers who write operating systems and
multithreaded libraries such as java.util.concurrent, it can lead to non-obvious consequences for
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1 async { // Task T3
2 int p x = p . x ;
3 System . out . p r i n t l n ( ” F i r s t read = ” + p x ) ;
4 System . out . p r i n t l n ( ”Second read = ” + q . x ) ;
5 System . out . p r i n t l n ( ”Third read = ” + p x ) ;
6 }

Listing 15: Rewrite of Task T3 from Listing 14

mainstream application programmers. For example, suppose an application programmer decided to
rewrite the body of Task T3 as shown in Listing 15. The main change is to introduce a local variable
p x that captures the value of p.x in line 2, and replaces p.x by p x in lines 3 and 5. This rewrite
is perfectly legal for a sequential program, and should be legal for computations performed within a
sequential step. However, a consequence of this rewrite is that Task T3 may print “0, 1, 0” as output,
which would not be permitted by the SC model. Thus, an apparently legal code transformation within
a sequential step has changed the semantics of the parallel program under the SC model.

2. Location Consistency: The Location Consistency (LC) memory model [4] was introduced to provide
an alternate semantics to address the code transformation anomalies that follow from the SC model.
The LC rule states that a read of location L in step Si may receive the value from any Most Recent
Write (MRW) of L relative to Si in the CG. A MRW is a write operation that can potentially execute
in parallel with Si, or one that precedes Si by a chain of dependence edges such that there is no other
write of L on that chain. LC is a weaker model than SC because it permits all the outputs that SC
does, as well as additional outputs that are not permitted by SC. For the program in Listing 14, the
LC model permits Task T3 to print “0, 1, 2” and Task T4 to print “0, 2, 1” in the same execution,
and also permits Task T3 to print “0, 1, 0” in a different execution.

3. C++ Memory Model: The proposed memory model for the new C++0x standard [3] makes the fol-
lowing assumption about data races:

“We give no semantics to programs with data races. There are no benign C++ data races.”

A data race that cannot change a program’s output with respect to its inputs is said to be benign.
A special case of benign races is when all write accesses to a location L (including the initializing
write) write the same value to L. It is benign, because it does not matter how many writes have been
performed on L before a read occurs, since all writes update L with the same value.

Thus, the behavior of a program with data races is completely undefined in the C++ memory model.
While this approach may be acceptable for systems programming languages like C/C++, it is unac-
ceptable for type-safe languages like Java that rely on basic safety guarantees for pointers and memory
accesses.

Why should you care about these memory models if you write bug-free code without data races? Because
the code that you write may be used in conjunction with other code that causes your code to participate in
a data race. For example, if your job to provide a sequential method that implements the body of Task T3
in Listing 14, the program that uses your code may exhibit data races even though your code may be free
of bugs. In that case, you should be aware what the impact of data races may be on the code that you
have written, and whether or not a transformation such as the one in Listing 15 is legal. The type of the
shared location also impacts the assumptions that you make. On some systems, the guarantees for 64-bit
data types such as long and double are weaker than those for smaller data types such as int and Java
object references.
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3 Loop-level Parallelism

3.1 Parallel Loops

As mentioned earlier, the finish and async constructs can be used to create parallel loops using the finish–
for–async pattern shown in Listing 16. In this pseudocode, we assume that the for construct can be used
to express sequential multidimensional (nested) loops. Unlike Java lambdas, we assume that the non-final
values of i and j in the pseudocode are copied automatically when the async is created, thereby avoiding the
possibility of data races on i and j. (There are other programming languages that support this convention,
most notably C++11 lambdas with the = capture clause.)

The for loop in Case 1 expresses a two-dimensional loop with m× n iterations. Since the body of this loop
is an async statement, both loops i and j can run in parallel in Case 1. However, only loop i can run in
parallel in Case 2, and only loop j can run in parallel in Case 3.

Most parallel programming languages include special constructs to embody the commonly used finish–
for–async parallel loop pattern shown above in Listing 16. Following the notation used in other parallel
languages and the ∀ mathematical symbol, we use the forall keyword to identify loops with single or multi-
dimensional parallelism and an implicit finish. Listing 17, shows how the loops in Listing 16 can be rewritten
using the forall notation.

1 // Case 1 : l oops i , j can run in p a r a l l e l
2 f in ish for (point [ i , j ] : [ 0 :m−1 ,0:n−1]) async A[ i ] [ j ] = F(A[ i ] [ j ] ) ;
3
4 // Case 2 : only loop i can run in p a r a l l e l
5 f in ish for (point [ i ] : [ 1 :m−1]) async
6 for (point [ j ] : [ 1 : n−1]) // Equiva lent to f o r ( j =1; j<n ; j++)
7 A[ i ] [ j ] = F(A[ i ] [ j −1]) ;
8
9 // Case 3 : only loop j can run in p a r a l l e l

10 for (point [ i ] : [ 1 :m−1]) // Equiva lent to f o r ( i =1; i<m; j++)
11 f in ish for (point [ j ] : [ 1 : n−1]) async
12 A[ i ] [ j ] = F(A[ i −1] [ j ] ) ;

Listing 16: Examples of three parallel loops using finish-for-async (pseudocode)

1 // Case 1 : l oops i , j can run in p a r a l l e l
2 f o ra l l (point [ i , j ] : [ 0 :m−1 ,0:n−1]) A[ i ] [ j ] = F(A[ i ] [ j ] ) ;
3
4 // Case 2 : only loop i can run in p a r a l l e l
5 f o ra l l (point [ i ] : [ 1 :m−1])
6 for (point [ j ] : [ 1 : n−1]) // Equiva lent to f o r ( j =1; j<n ; j++)
7 A[ i ] [ j ] = F(A[ i ] [ j −1]) ;
8
9 // Case 3 : only loop j can run in p a r a l l e l

10 for (point [ i ] : [ 1 :m−1]) // Equiva lent to f o r ( i =1; i<m; j++)
11 f o ra l l (point [ j ] : [ 1 : n−1])
12 A[ i ] [ j ] = F(A[ i −1] [ j ] ) ;

Listing 17: Examples of three parallel loops using forall (pseudocode)
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1 f in ish {
2 for ( int i = 0 ; i < n ; i++)
3 for ( int j = 0 ; j < n ; j++)
4 async C[ i ] [ j ] = 0 ;
5 }
6 f in ish {
7 for ( int i = 0 ; i < n ; i++)
8 for ( int j = 0 ; j < n ; j++)
9 async

10 for ( int k = 0 ; k < n ; k++)
11 C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;
12 }
13 System . out . p r i n t l n (C [ 0 ] [ 0 ] ) ;

Listing 18: Matrix multiplication program using finish-async

1 f o ra l l (point [ i , j ] : [ 0 : n−1 ,0:n−1]) C[ i ] [ j ] = 0 ;
2 f o ra l l (point [ i , j ] : [ 0 : n−1 ,0:n−1])
3 for (point [ k ] : [ 0 :K−1])
4 C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;
5 System . out . p r i n t l n (C [ 0 ] [ 0 ] ) ;

Listing 19: Matrix multiplication program using forall

3.2 Parallel Matrix Multiplication

Consider the pseudocode fragment for a parallel matrix multiplication example in Listing 18.

This program executes all (i, j) iterations for line 4 in parallel to initialize array C, waits for all the iterations
to complete at line 5, and then executes all (i, j) iterations for lines 10–11 in parallel (each of which executes
the k loop sequentially). Since async and finish are powerful and general constructs, the structure of
sequential and parallel loops in Listing 18 is not immediately easy to discern. Instead, the same program
can be rewritten more compactly and clearly using forall loops as shown in Listing 19.

There are a number of features worth noting in Listing 19:

• The combination of for–for–async is replaced by a single keyword, forall. Multiple loops can be
collapsed into a single forall with a multi-dimensional iteration space. (In Listing
refcode:finish-async, both loop nests are two-dimensional.)

• The iteration variable for a forall is a point (integer tuple) such as [i, j].

• The loop bounds can be specified as a rectangular region (dimension ranges) such as [0 : n−1, 0 : n−1].

• We also extend the sequential for statement so as to iterate sequentially over a rectangular region, as
in line 5.

We now briefly discuss the point and region constructs used in our pseudocode. A point is an element of an
k-dimensional Cartesian space (k ≥ 1) with integer-valued coordinates, where k is the rank of the point. A
point’s dimensions are numbered from 0 to k − 1. Points can be used outside of forall loops, if so desired.
For completeness, we summarize the following operations that are defined on a point-valued expression p1,
even though it is unlikely that you will need to go beyond the use of points shown in Listing 19:

• p1.rank — returns rank of point p1
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1 // Unchunked ve r s i on
2 f o ra l l (point [ i ] : [ 0 : n−1]) X[ i ] = Y[ i ] + Z [ i ] ;
3 . . .
4 // Chunked ve r s i on
5 int nc = numWorkerThreads ( ) ; // Set number o f chunks to number o f worker threads
6 int s i z e = (n+nc−1)/nc ; // chunk s i z e = c e i l i n g (n/nc ) f o r i n t e g e r s n>=0, nc>0
7 f o ra l l (point [ i i ] : [ 0 : nc−1]) {
8 int myLo = i i ∗ s i z e ;
9 int myHi = Math . min (n−1, ( i i +1)∗ s i z e −1);

10 for ( int i = myLo ; i <= myHi ; i++)
11 X[ i ] = Y[ i ] + Z [ i ] ;
12 }
13 }

Listing 20: Unchunked and chunked versions of a forall loop

• p1.get(i) — returns element in dimension i of point p1, or element in dimension (i mod p1.rank)
if i < 0 or i ≥ p1.rank.

• p1.lt(p2), p1.le(p2), p1.gt(p2), or p1.ge(p2) returns true if and only if p1 is lexicographically <,
≤, >, or ≥ p2. These operations are only defined when p1.rank = p1.rank.

A k-dimensional region is a set of k-dimensional points, defined as a Cartesian product of low:high contiguous
subranges in each dimension. Thus, [1 : 10] is a 1-dimensional region consisting of the 10 points [1], . . . , [10],
and [1 : 10,−5 : 5] is a 2-dimensional region consisting of 110 points since the first dimension has 10 values
(1 . . . 10) and the second dimension has 11 values (−5 . . . 5). Likewise, the region [0:200,1:100] specifies
a collection of two-dimensional points (i,j) with i ranging from 0 to 200 and j ranging from 1 to 100.
Regions are used to define the range for sequential point-wise for and parallel forall loops.

A task executes a point-wise for statement by sequentially enumerating the points in its region in canonical
lexicographic order, and binding the components of the points to the index variables defined in the for

statement e.g., variable k in line 3 of Listing 19. A convenience relative to the standard Java idiom, “for
(int i = low; i <= high; i++)”, is that the upper bound, high, is re-evaluated in each iteration of a
Java loop, but it is only evaluated once in a [low:high] region expression. Another convenience is that
loops can be easily converted from sequential to parallel (or vice versa) by replacing for by forall.

Finally, we include a forasync statement that is like forall but does not include an implicit finish

statement. The statement forasync (point p : R) S supports parallel iteration over all the points in
region R by launching each iteration S as a separate async. Just as with standard async statements, a
separate finish construct is needed to await termination of all iterations in a forasync.

3.3 Iteration Grouping: Chunking of Parallel Loops

Though the forall construct is convenient for the programmer, the approach of creating a separate async

task for each iteration can lead to excessive overheads. For a parallel loop, there are additional choices
available. A natural approach to reduce the overhead of parallel loops is that of batching or “chunking”
groups of iterations together so that iterations in the same chunk execute sequentially within a single async

task, but parallelism can be exploited across chunks. The chunks size plays a critical role in determining
the effectiveness of chunking. If it is too small, then the overhead can still be an issue due to the small size
of async tasks. If it is too large, then there is a danger of losing too much parallelism. Fortunately, it is
possible to set up chunking of parallel loops such that the number of chunks (or equivalently, the chunk size)
can be specified as a runtime parameter that can be “tuned” for a given input size and parallel machine.
For loops in which the amount of work per iteration is fixed, a common approach is to set the number of
chunks to the number of available processors.
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1 // Return range f o r chunk i i i f range [ rLo : rHi ] i s d iv ided in to nc chunks
2 stat ic r eg i on getChunk ( int rLo , rHi , int nc , int i i ) {
3 i f ( rLo > rHi ) return [ 0 : −1 ] ; // Empty reg i on
4 a s s e r t ( nc > 0 ) ; // number o f chunks must be > 0
5 a s s e r t (0 <= i i && i i < c ) ; // i i must be in [ 0 : c−1] range
6 int chunkSize = ( rHi−rLo+c−1)/c ;
7 int myLo = rLo + i i ∗ chunkSize ;
8 int myHi = Math . min ( rHi , rLo + ( i i +1)∗ chunkSize − 1 ) ;
9 return [myLo :myHi ] ; // range f o r chunk i i

10 }
11
12 // Chunked ve r s i on us ing getChunk func t i on
13 int nc = numWorkerThreads ( ) ; // Set number o f chunks to number o f worker threads
14 f o ra l l (point [ i i ] : [ 0 : nc−1]) {
15 reg i on myRange = getChunk ( rLo , rHi , nc , i i ) ;
16 int myLo = myRange . rank ( 0 ) . low ( ) ;
17 int myHi = myRange . rank ( 0 ) . high ( ) ;
18 for ( int i = myLo ; i <= myHi ; i++)
19 X[ i ] = Y[ i ] + Z [ i ] ;
20 }
21 }

Listing 21: Unchunked and chunked versions of a one-dimensional forall loop

Listing 20 includes unchunked and chunked version of an example forall loop. The chunking is achieved by
creating an outer parallel forall loop with number of chunks = nc and an inner sequential for loop that
executes the iterations in a given chunk. We assume the availability of a library call, numWorkerThreads(),
that returns the number of worker threads with which the parallel program execution was initiated; this is
a suitable value for the number of chunks in this example. The size variable is then set to the expected
chunk size i.e., number of iterations per chunk. If nc evenly divides n, then we could just set size to equal
n/nc. Otherwise, we’d like to set size to be dn/nce. Since Java does not provide a convenient primitive for
performing this operation on integers5, we use the mathematical property that dx/ye equals b(x+ y− 1)/ye
for integers x, y such that y > 0. (Recall that standard integer division in languages like Java and C truncates
downwards like the floor function.)

After nc and size have been identified, the outer forall loop is set up to execute for nc iterations with
index variable ii ranging from 0 to nc− 1. Each forall iteration then computes the range of iterations for
its chunk, myLo. . .myHi as a function of its index variable ii. The use of the Math.min function ensures that
the last chunk stays within the bounds of the original loop (in the case that nc does not evenly divide n).
This division into chunks guarantees that each iteration of the original loop is assigned to exactly one chunk
and that all chunks have the same size when n is a multiple of nc.

The above calculation can get more complicated when the lower bound of the original loop is non-zero, and
when the original forall has a multidimensional region. For general loop bounds, we can introduce a helper
function called GetChunk() as shown in Listing 21. For multidimensional regions, the GetChunk() function
can simply be performed separately in each dimension, provided that the total number of chunks is also
given as a multidimensional region that specifies the number of chunks in each dimension.

3.4 Barriers in Parallel Loops

Thus far, you have learned the fundamentals of task creation (async, async await) and task termination
(finish, future.get()). There are many algorithms that also need to implement some form of directed syn-
chronization among tasks, with well defined predecessor and successor steps in the computation graph. While

5Math.ceiling() only operates on values of type double.
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1 rank . count = 0 ; // rank ob j e c t conta in s an i n t f i e l d , count
2 f o ra l l (point [ i ] : [ 0 :m−1]) {
3 int square = i ∗ i ;
4 System . out . p r i n t l n ( ”He l lo from task ” + i + ” with square = ” + square ) ;
5 System . out . p r i n t l n ( ”Goodbye from task ” + i + ” with square = ” + square ) ;
6 }

Listing 22: Hello-Goodbye forall loop

the finish and future.get() constructs impose directed synchronization, they only apply to cases where the
predecessor has to terminate for the synchronization to be enabled (via join edges in the computation graph).

To understand the need for other forms of directed synchronization, especially a barrier synchronization,
consider the simple “Hello-Goodbye” forall example program shown in Listing 22. This example contains
a single forall loop with m iterations numbered 0. . .m-1. The main program task starts execution at line 1,
creates m child tasks at line 2, and waits for them to finish after line 7. (Recall that forall is shorthand for
finish–for–async.) Each forall iteration (task) then prints a “Hello” string (line 5) and a “Goodbye”
string (line 6). While the Hello and Goodbye strings from the same task must be printed in order, there
is no other guarantee on the relative order among print statements from different tasks6. For example, the
following output is legal for the m = 4 case:

Hello from task ranked 0 with square = 0

Hello from task ranked 1 with square = 1

Goodbye from task ranked 0 with square = 0

Hello from task ranked 2 with square = 4

Goodbye from task ranked 2 with square = 4

Goodbye from task ranked 1 with square = 1

Hello from task ranked 3 with square = 9

Goodbye from task ranked 3 with square = 9

Now, let us consider how to modify the program in Listing 22 so as to ensure that all Hello strings are printed
before any Goodbye string. One approach would be to replace the forall loop by two forall loops, one for
the Hellos and one for the Goodbyes. However, a major inconvenience with this approach is that all local
variables in the first forall loop (such as square) need to be copied into objects or arrays so that they can
be communicated into the second forall loop. The preferred approach instead is to use next statements,
commonly known as barriers, as shown in Listing 23.

The semantics of a next statement inside a forall is as follows. A forall iteration i suspends at next until
all iterations arrive (i.e., all iterations complete their previous phase), after which iteration i can advance
to its next phase. Thus, in Listing 23, next acts as a barrier between Phase 0 which corresponds to all the
computations executed before next and Phase 1 which corresponds to all the computations executed after
next.

Figure 13 illustrates how the barrier synchronization (next statement) works for the program example in
Listing 23 for the m = 4 case. Each task (iteration) performs a signal (sig) operation when it enters the
barrier, and then performs a wait (wait) operation thereby staying idle until all tasks have entered the
barrier. In the scenario shown in Figure 13, iteration i = 0 is the first to enter the barrier, and has the
longest idle time. Iteration i = 2 is the last to enter the barrier, so it has no idle time since its signal
operation releases all iterations waiting at the barrier.

Can you think of real-world situations that can be modeled by barriers? Consider a (somewhat elaborate)

6The source of nondeterminism in this example arises from the race conditions among the print statements, which violates
the precondition of the Structural Determinism property in Section 2.6.
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1 rank . count = 0 ; // rank ob j e c t conta in s an i n t f i e l d , count
2 f o ra l l (point [ i ] : [ 0 :m−1]) {
3 // Star t o f phase 0
4 int square = i ∗ i ;
5 System . out . p r i n t l n ( ”He l lo from task ” + i + ” with square = ” + square ) ;
6 next ; // Acts as b a r r i e r between phases 0 and 1
7 // Star t o f phase 1
8 System . out . p r i n t l n ( ”Goodbye from task ” + i + ” with square = ” + square ) ;
9 }

Listing 23: Hello-Goodbye forall loop with barrier (next) statement

Forall 
iterations 

Phase 0 Phase 1 

i=0 

i=1 

i=2 

i=3 

SIG 

SIG 

SIG 

WAIT 

SIG 

WAIT 

WAIT 

WAIT 

Figure 13: Illustration of barrier synchronization (next statement) for program example in Listing 23

family meal where no one starts eating the main course until everyone has finished their soup, and no one
starts eating dessert until everyone has finished their main course. In this case, each family member can be
modeled as a forall iteration, each course — soup, main dish, and dessert — can be modeled as a phase,
and each synchronization between phases can be modeled as a barrier.

The next statement in a forall provides its parallel iterations/tasks with a mechanism to periodically
rendezvous with each other. The scope of synchronization for a next statement is its closest enclosing
forall statement7. Specifically, when iteration i of the forall executes next, it is informing the other
iterations that it has completed its current phase and is now waiting for all other iterations to complete
their current phase by executing next. There is no constraint on which statements are executed by a forall

iteration before or after a next statement. There is also no constraint on where a next can be performed by
a forall iteration. For example, a next can be performed by a task in the middle of an if, while or for

statement, and different forall iterations can even perform next at different program points in different
methods.

When a forall iteration i terminates, it also drops its participation in the barrier i.e., other iterations do
not wait for iteration i past its termination. This rule avoids the possibility of deadlock with next operations.
The example in Listing 24 illustrates this point.

The iteration numbered i in the forall-i loop in line 1 of Listing 24 performs a sequential for-j loop in
line 2 with i + 1 iterations (0 ≤ j ≤ i). Each iteration of the for-j loop prints (i, j) before performing a
next operation. Thus, j captures the phase number for each forall-i iteration participating in the barrier.
Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and then terminates. Iteration i = 1 of
the forall-i loop prints (1, 0), performs a next, prints (1, 1), performs a next, and then terminates. And
so on, as shown in Figure 14 which illustrates how the set of forall iterations synchronizing on the barrier
decreases after each phase in this example.

7Later, you will learn how the next statement can be used outside forall’s as well.
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1 f o ra l l (point [ i ] : [ 0 :m−1]) {
2 for (point [ j ] : [ 0 : i ] {
3 // Fo ra l l i t e r a t i o n i i s execut ing phase j
4 System . out . p r i n t l n ( ” ( ” + i + ” , ” + j + ” ) ” ) ;
5 next ;
6 }
7 }

Listing 24: Example of forall loop with varying numbers of next operations across different iterations

i=0   i=1   i=2   i=3   i=4   i=5   i=6   i=7 
  |     |     |     |     |     |     |     | 
(0,0)  (1,0)  (2,0)  (3,0)  (4,0)  (5,0)  (6,0)  (7,0) 
  |     |     |     |     |     |     |     | 
next ----- next ----- next ----- next ----- next ----- next ----- next ----- next 
  |     |     |     |     |     |     |     | 
  |   (1,1)  (2,1)  (3,1)  (4,1)  (5,1)  (6,1)  (7,1) 
  |     |     |     |     |     |     |     | 
end ----- next ----- next ----- next ----- next ----- next ----- next ----- next 
     |     |     |     |     |     |     | 

    |   (2,2)  (3,2)  (4,2)  (5,2)  (6,2)  (7,2) 
    |     |     |     |     |     |     | 
  end ----- next ----- next ----- next ----- next ----- next ----- next 

         |     |     |     |     |     | 
      |   (3,3)  (4,3)  (5,3)  (6,3)  (7,3) 

        |     |     |     |     |     | 
    end ----- next ----- next ----- next ----- next ----- next 

             |     |     |     |     | 
        |   (4,4)  (5,4)  (6,4)  (7,4) 

             |     |     |     |     | 
      end ----- next ----- next ----- next ----- next 

                 |     |     |     |   
          |   (5,5)  (6,5)  (7,5) 

                 |     |     |     | 
        end ----- next ----- next ----- next 

                     |     |     | 
            |   (6,6)  (7,6) 

                     |      |     | 
          end ----- next ----- next 

                         |     | 
              |   (7,7) 

                         |     | 
            end ----- next  

                             | 
              end 

i=0…7 are forall iterations 

(i,j) = println output 

next = barrier operation 

end = termination of a forall iteration 

Figure 14: Illustration of the execution of forall example in Listing 24
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next  
signal edges 

wait edges 

Phase j 

Phase j+1 

Figure 15: Modeling a next operation in the Computation Graph with Signal and Wait edges and a Next
node

1 rank . count = 0 ; // rank ob j e c t conta in s an i n t f i e l d , count
2 f o ra l l (point [ i ] : [ 0 :m−1]) {
3 // Star t o f He l l o phase
4 int square = i ∗ i ;
5 System . out . p r i n t l n ( ”He l lo from task ” + i + ” with square = ” + square ) ;
6 next ; // Bar r i e r
7 i f ( i == 0 ) System . out . p r i n t l n ( ”LOG: Between He l lo & Goodbye Phases ” ) ;
8 next ; // Bar r i e r
9 // Star t o f Goodbye phase

10 System . out . p r i n t l n ( ”Goodbye from task ” + i + ” with square = ” + square ) ;
11 }

Listing 25: Hello-Goodbye program in Listing 23 extended with a second barrier to print a log message
between the Hello and Goodbye phases

Figure 15 shows how a next operation can be modeled in the dynamic Computation Graph by adding signal
and wait edges. A1, A2, A3, A4 represent four iterations in a common forall loop. The execution of a
next statement causes the insertion of a single next node in the CG as shown in Figure 15. signal edges
are added from the last step prior to the next in each forall iteration to the next node, and wait edges
are added from the next node to the continuation of each forall iteration. Collectively, these edges enforce
the barrier property since all tasks must complete their Phase j computations before any task can start its
Phase j+1 computation.

3.4.1 Next-with-single Statement

Consider an extension to the Hello-Goodbye program in which we want to print a log message after the Hello
phase ends but before the Goodbye phase starts. Thought this may sound like a contrived problem, it is
representative of logging functionalities in real servers where status information needs to be printed at every
“heartbeat”.

A simple solution is to assign this responsibility to iteration i = 0 of the forall loop as shown in Listing 25.
The log message is printed by iteration i = 0 on line 8 after a barrier in line 7 and before a second barrier
in line 9. Though correct, it is undesirable to use two barriers when trying to log a single phase transition.
To mitigate this problem, the next statement offers a next-with-single option. This option has the form
next single 〈single-statement〉, where 〈single-statement〉 is a statement that is performed exactly once
after all tasks have completed the previous phase and before any task begins its next phase. The CG edges
for a next-with-single statement are shown in Figure 16.

Listing 26 shows how a next-with-single statement can be used to perform the same computation as in
Listing 25 by using one barrier operation (with a single statement) instead of two. Note that no if statement
is needed in the body of the single statement, since it will be executed exactly once by a randomly selected

35 of 39



COMP 322
Spring 2016

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

next-end  

signal edges 

wait edges 

next-start  

single-statement 

Figure 16: Modeling a next-with-single statement in the Computation Graph

1 rank . count = 0 ; // rank ob j e c t conta in s an i n t f i e l d , count
2 f o ra l l (point [ i ] : [ 0 :m−1]) {
3 // Star t o f He l l o phase
4 int square = i ∗ i ;
5 System . out . p r i n t l n ( ”He l lo from task ” + i + ” with square = ” + square ) ;
6 next s i n g l e { // s i n g l e statement
7 System . out . p r i n t l n ( ”LOG: Between He l lo & Goodbye Phases ” ) ;
8 }
9 // Star t o f Goodbye phase

10 System . out . p r i n t l n ( ”Goodbye from task ” + i + ” with square = ” + square ) ;
11 }

Listing 26: Listing 25 extended with a next-with-single statement in lines 15–17

iteration of the forall loop.

3.5 One-Dimensional Iterative Averaging

To further motivate the need for barriers, consider the one-dimensional iterative averaging algorithm illus-
trated in Figure 17. The idea is to initialize a one-dimensional array of double with n+2 elements, myVal,
with boundary conditions, myVal[0] = 0 and myVal[n+1] = 1. Then, in each iteration, each interior el-
ement (with index in the range 1 . . . n) is replaced by the average of its left and right neighbors. After a
sufficient number of iterations, we expect each element of the array to converge to myV al[i] = i/(n + 1).
For this final quiescent equilibrium state, it is easy to see that myV al[i] = (myV al[i− 1] + myV al[i + 1])/2
must be the average of its left and right neighbors, for all i in the range 1 . . . n.

3.5.1 Idealized Implementations of One-Dimensional Iterative Averaging Example

In this section, we discuss two idealized implementations of the one-dimensional iterative averaging example.
The first version in Listing 27 uses a for–forall structure, whereas the second version in Listing 28 uses a
forall–for–next structure.
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Figure 17: Illustration of the One-Dimensional Iterative Averaging Example for n = 8 (source: Figure 6.19
in [10])

1 double [ ] myVal = new double [ n ] ; myVal [ 0 ] = 0 ; myVal [ n+1] = 1 ;
2 for (point [ i t e r ] : [ 0 : i t e r a t i o n s −1]) {
3 // Output array MyNew i s computed as func t i on o f
4 // input array MyVal from prev ious i t e r a t i o n
5 double [ ] myNew = new double [ n ] ; myNew [ 0 ] = 0 ; myNew[ n+1] = 1 ;
6 f o ra l l (point [ j ] : [ 1 : n ] ) { // Create n ta sk s
7 myNew[ j ] = (myVal [ j −1] + myVal [ j +1 ] ) /2 . 0 ;
8 } // f o r a l l
9 myVal = myNew; // myNew becomes input array f o r next i t e r a t i o n

10 } // f o r

Listing 27: Idealized One-Dimensional Iterative Averaging program using for-forall computation structure
with n parallel tasks working on elements 1 . . . n

The first version in Listing 27 contains an outer for–iter loop in line 2 which is intended to run for a
sufficiently large number of iterations to guarantee convergence. (Many real-world applications use a
while loop instead of a counted for loop to test for convergence.) Each iteration of the for–iter loop starts
by allocating and initializing a new output array, myNew, in line 5. For each instance of the forall in
lines 6–8, myVal is a reference to the array computed in the previous iteration and myNew is a reference to the
array computed in the current iteration. Line 6 performs the averaging step in parallel due to the forall–j
loop. There are no data races induced by line 6, since the reads and writes are performed on distinct arrays
and each write is performed on a distinct location in myNew.

You learned earlier that repeated execution of forall, as in Listing 27, can incur excessive overhead because
each forall spawns multiple async tasks and then waits for them to complete with an implicit finish

operation. Keeping this observation in mind, Listing 28 shows an alternate implementation of the iterative
averaging example using the next (barrier) statement. Now, the forall loop has moved to the outer level
in line 3 and the for loop to the inner level in line 4. Further, the array references myVal and myNew are
stored in fields rather than local variables so that they can be updated inside a forall iteration. Finally,
a next-with-single statement is used in lines 5–8 to ensure that the “myVal = myNew;” copy statement and
the allocation of a new array in lines 6 and 7 are executed exactly once during each phase transition.

3.5.2 Optimized Implementation of One-Dimensional Iterative Averaging Example

Though Listing 28 in Section 3.5.1 reduced the number of tasks created by the use of an outer forall with
a barrier instead of an inner forall, two major inefficiencies still remain. First, the allocation of a new
array in every iteration of the for–iter loop is a major source of memory management overhead. Second,
the forall loop creates one task per array element which is too fine-grained for use in practice.

To address the first problem, we observe that only two arrays are needed for each iteration, an input array
and an output array. Therefore, we can get by with two arrays for the entire algorithm by just swapping
the roles of input and output arrays in every iteration of the for–iter loop. To address the second problem,
we can use loop chunking as discussed in Section 3.3. Specifically, the forall loop can be created for t � n
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1 // Assume that myVal and myNew are mutable f i e l d s o f type double [ ]
2 myNew = new double [ n ] ; myNew [ 0 ] = 0 ; myNew[ n+1] = 1 ;
3 f o ra l l (point [ j ] : [ 1 : n ] ) { // Create n ta sk s
4 for (point [ i t e r ] : [ 0 : i t e r a t i o n s −1]) {
5 next { // s i n g l e statement
6 myVal = myNew; // myNew becomes input array f o r next i t e r a t i o n
7 myNew = new double [ n ] ; myNew [ 0 ] = 0 ; myNew[ n+1] = 1 ;
8 }
9 myNew[ j ] = (myVal [ j −1] + myVal [ j +1 ] ) /2 . 0 ;

10 } // f o r
11 } // f o r a l l

Listing 28: One-Dimensional Iterative Averaging Example using forall-for-next-single computation structure
with n parallel tasks working on elements 1 . . . n

1 double [ ] va l1 = new double [ n ] ; va l [ 0 ] = 0 ; va l [ n+1] = 1 ;
2 double [ ] va l2 = new double [ n ] ;
3 int batchS ize = Cei lDiv (n , t ) ; // Number o f e lements per task
4 f o ra l l (point [ i ] : [ 0 : t−1]) { // Create t ta sk s
5 double [ ] myVal = val1 ; double myNew = val2 ; double [ ] temp = null ;
6 int s t a r t = i ∗ batchS ize + 1 ; int end = Math . min ( s t a r t+batchSize −1,n ) ;
7 for (point [ i t e r ] : [ 0 : i t e r a t i o n s −1]) {
8 for (point [ j ] : [ s t a r t : end ] )
9 myNew[ j ] = (myVal [ j −1] + myVal [ j +1 ] ) /2 . 0 ;

10 next ; // b a r r i e r
11 temp = myNew; myNew = myVal ; myVal = temp ; // swap (myNew, myVal )
12 } // f o r
13 } // f o r a l l

Listing 29: One-Dimensional Iterative Averaging Example using forall-for-next computation structure with
t parallel tasks working on an array with n + 2 elements (each task processes a batch of array elements)

iterations, and each iteration of the forall loop can be responsible for processing a batch of n/t iterations
sequentially.

Keeping these observations in mind, Listing 29 shows an alternate implementation of the iterative averaging
example. The forall loop is again at the outermost level (line 4), as in Listing 28. However, each iteration of
the forall now maintains local variables, myVal and myNew, that point to the two arrays. The swap(myNew,
myVal) computation in line 11 swaps the two references so that myNew becomes myVal in the next iteration
of the for loop. (There are two distinct array objects allocated in lines 1 and 2, whereas myVal and myNew

are pointers to them that are swapped each time line 10 is executed.) Maintaining these pointers in local
variables avoids the need for synchronization in the swap computation in line 11.

Line 3 computes batchSize as dn/te. Line 6 computes the start index for batch i, where 0 ≤ i ≤ t − 1.
The for loop in line 7 sequentially computes all array elements assigned to batch i. (The Math.min()

function is used to ensure that the last iteration of the last batch equals n.) This form of batching is very
common in real-world parallel programs. In some cases, the compiler can perform the batching (chunking)
transformation automatically, but programmers often perform the batching by hand so as to be sure that it
is performed as they expect.

The for–iter loop at line 7 contains a next operation in line 10. The barrier semantics of the next statement
ensures that all elements of myNew are computed in line 9 across all tasks, before moving to line 11 and the
next iteration of the iter loop at line 8. We can see that only t tasks are created in line 4, and the same
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tasks repeatedly execute the iterations of the iter loop in line 7 with a barrier synchronization in line 10.
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