
COMP 322: Fundamentals of Parallel Programming

Lecture 22: Actors (continued)

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 22 March 2021

http://comp322.rice.edu

COMP 322, Spring 2021 (M.Joyner)

Worksheet #21: Interaction between finish and actors
What output will be printed if the end-finish operation from slide 15 is moved from line 13 to line 11 as shown below?

1. finish(() -> {
2. int threads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring = new ThreadRingActor[threads];
5. for(int i=threads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start(); // like an async
8. if (i < threads - 1) {
9. ring[i].nextActor(ring[i + 1]);
10. } }
11. }); // finish
12.ring[threads-1].nextActor(ring[0]);
13.ring[0].send(numberOfHops);
14.  

2

Deadlock (no output): the end-finish
operation in line 11 waits for all the
actors started in line 7 to terminate,
but the actors are waiting for the
message sequence initiated in line 13
before they call exit().

COMP 322, Spring 2021 (M.Joyner)

Announcements

•HW #3 Checkpoint 1 is due today by 11:59pm
•The entire written + programming homework (Checkpoint #2) is due by Monday, April 5th
•Quiz for Unit 5 is due Monday, March 29th at 11:59pm

3

COMP 322, Spring 2021 (M.Joyner)

Recap of Actors
! Rely on asynchronous messaging
! Message are sent to an actor using its send() method
! Messages queue up in the mailbox
! Messages are processed by an actor after it is started
! Messages are processed asynchronously

—one at a time
—using the body of process()

4

COMP 322, Spring 2021 (M.Joyner)

Simple Pipeline using Actors

5

Stage-1

Filter
even

length
strings

Stage-2

Filter
lowercase

strings

Stage-3

Print results

A
Simple
pipeline
with
3
stages

Simple
pipeline
with
stages

pipeline
with
stages

COMP 322, Spring 2021 (M.Joyner)

Sieve of Eratosthenes using Actors

6

COMP 322, Spring 2021 (M.Joyner)

Limitations of Actor Model
! Deadlocks possible

—Occurs when all started (but non-terminated) actors have empty mailboxes
! Data races possible when messages include shared objects
! Simulating synchronous replies requires some effort

—e.g., does not support addAndGet()
! Implementing truly concurrent data structures is hard

—No parallel reads, no reductions/accumulators
! Difficult to achieve global consensus

—Finish and barriers not supported as first-class primitive

7

COMP 322, Spring 2021 (M.Joyner)

Implementing an Unbounded Buffer using Actors

8

COMP 322, Spring 2021 (M.Joyner)

Unbounded Buffer Actor Interaction Diagram

9

COMP 322, Spring 2021 (M.Joyner)

Unbounded Buffer Actor Interaction Diagram (cont.)

10

COMP 322, Spring 2021 (M.Joyner)

Poll: Is Main Actor needed for Producer-Consumer model?
Under which of the following scenarios is a main actor needed to model producer-
consumer relationship with an unbounded buffer? Assume Producer(s) have access to
Consumer list and Consumer(s) have access to Producer list.

! 1 producer, 1 consumer
! 1 producer, many consumers
! Many producers, 1 consumer
! Many producers, many consumers

Under which of those scenarios is having a main actor more efficient?

11

COMP 322, Spring 2021 (M.Joyner)

Pipeline and Actors

Pipelined Parallelism:
! Each stage can be represented as an actor
! Stages need to ensure ordering of messages

while processing them
! Slowest stage is a throughput bottleneck

12

COMP 322, Spring 2021 (M.Joyner)

Motivation for Parallelizing Actors

Pipelined Parallelism:
! Reduce effects of slowest stage by introducing

task parallelism.
! Increases the throughput.

13

COMP 322, Spring 2021 (M.Joyner)

Worksheet #22: Analyzing Parallelism in an Actor Pipeline
Consider a three-stage pipeline of actors (as in slide 5), set up so that P0.nextStage = P1, P1.nextStage = P2, and
P2.nextStage = null. The process() method for each actor is shown below.

Assume that 100 non-null messages are sent to actor P0 after all three actors are started, followed by a null
message. What will the total WORK and CPL be for this execution? Recall that each actor has a sequential
thread.

1. protected void process(final Object msg) {
2. if (msg == null) {
3. exit();
4. } else {
5. doWork(1); // unit work
6. }
7. if (nextStage != null) {
8. nextStage.send(msg);
9. }
10. }

 

14

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

...

