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Worksheet #21: Interaction between finish and actors
What output will be printed if the end-finish operation from slide 15 is moved from line 13 to line 11 as shown below?  

1.  finish(() -> {
2.    int threads = 4;
3.    int numberOfHops = 10;
4.    ThreadRingActor[] ring = new ThreadRingActor[threads];
5.    for(int i=threads-1;i>=0; i--) {
6.      ring[i] = new ThreadRingActor(i);
7.      ring[i].start(); // like an async
8.      if (i < threads - 1) {
9.        ring[i].nextActor(ring[i + 1]);
10.     } }
11. }); // finish
12.ring[threads-1].nextActor(ring[0]);
13.ring[0].send(numberOfHops);
14.  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Deadlock (no output): the end-finish 
operation in line 11 waits for all the 
actors started in line 7 to terminate, 
but the actors are waiting for the 
message sequence initiated in line 13 
before they call exit().
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Announcements

•HW #3 Checkpoint 1 is due today by 11:59pm 
•The entire written + programming homework (Checkpoint #2) is due by Monday, April 5th 
•Quiz for Unit 5 is due Monday, March 29th at 11:59pm
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Recap of Actors
! Rely on asynchronous messaging 
! Message are sent to an actor using its send() method 
! Messages queue up in the mailbox 
! Messages are processed by an actor after it is started 
! Messages are processed asynchronously 

—one at a time 
—using the body of process()
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Simple Pipeline using Actors
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Sieve of Eratosthenes using Actors
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Limitations of Actor Model
! Deadlocks possible 

—Occurs when all started (but non-terminated) actors have empty mailboxes  
! Data races possible when messages include shared objects 
! Simulating synchronous replies requires some effort 

—e.g., does not support addAndGet() 
! Implementing truly concurrent data structures is hard 

—No parallel reads, no reductions/accumulators 
! Difficult to achieve global consensus 

—Finish and barriers not supported as first-class primitive

7



COMP 322, Spring 2021 (M.Joyner)

Implementing an Unbounded Buffer using Actors
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Unbounded Buffer Actor Interaction Diagram
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Unbounded Buffer Actor Interaction Diagram (cont.)
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Poll: Is Main Actor needed for Producer-Consumer model?
Under which of the following scenarios is a main actor needed to model producer-
consumer relationship with an unbounded buffer?  Assume Producer(s) have access to 
Consumer list and Consumer(s) have access to Producer list.  

! 1 producer, 1 consumer 
! 1 producer, many consumers 
! Many producers, 1 consumer 
! Many producers, many consumers 

Under which of those scenarios is having a main actor more efficient?
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Pipeline and Actors

Pipelined Parallelism:  
! Each stage can be represented as an actor 
! Stages need to ensure ordering of messages 

while processing them 
! Slowest stage is a throughput bottleneck
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Motivation for Parallelizing Actors

Pipelined Parallelism:  
! Reduce effects of slowest stage by introducing 

task parallelism.  
! Increases the throughput.
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Worksheet #22: Analyzing Parallelism in an Actor Pipeline
Consider a three-stage pipeline of actors (as in slide 5), set up so that P0.nextStage = P1, P1.nextStage = P2, and 
P2.nextStage = null.  The process() method for each actor is shown below.   

Assume that 100 non-null messages are sent to actor P0 after all three actors are started, followed by a null 
message.  What will the total WORK and CPL be for this execution?  Recall that each actor has a sequential 
thread. 

1.      protected void process(final Object msg) {
2.            if (msg == null) {
3.                exit();
4.            } else {
5.                doWork(1); // unit work
6.            }
7.            if (nextStage != null) {
8.                nextStage.send(msg);
9.            }
10.        }
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