COMP 322: Fundamentals of Parallel Programming

Lecture 24. Java Threads,Java synchronized statement

Mack Joyner
mjoyner@rice.edu

http:.//comp322.rice.edu

COMP 322 Lecture 24 March 2021

http://comp322.rice.edu

Worksheet #23: Synchronized Reply using Pause/Resume

Actors don’t normally require synchronization with other actors. However, sometimes we might want actors
to be in synch with one another. Using a DDF and pause/resume, ensure that the SynchSenderActor doesn’t
process the next message until notified by the SyncReplyActor that the message was received and
processed.

l.class SynchSenderActor

2 extends Actor<Message> {

3 private Actor otherActor = .. l.class SynchReplyActor

4. vold process(Msg msg) { 2 extends Actor<DDF> ({

5. .. 3 vold process (DDF msg) {

6 DDF<T> ddf = newDDF(); 4

7 otherActor.send(ddf); 5. println("Message received");
8 pause(); // non-blocking 6 // process message

9 asyncAwait(ddf, () -> { 7 T responseResult = ...;
10. T synchronousReply = ddf.get(); 8 msg.put (responseResult);
11. println("Response received"); 9

12. resume(); // non-blocking 10.} }

13. }) i

14.

15.} }

COMP 322, Spring 2021 (M.Joyner)

Introduction to Java Threads and the java.lang.Thread class

* Execution of a Java program begins with an instance of Thread created by the
Java Virtual Machine (JVM) that executes the program’s main() method.

* Parallelism can be introduced by creating additional instances of class Thread
that execute as parallel threads.

|

1 public class Thread extends Object implements Runnable {

2 Thread() { ... } // Creates a new Thread

3 Thread (Runnable r) { ... } // Creates a new Thread with Runnable object r

4 void run() { ... ~da_to be executed by t

5 // Case 1: If this thread W \ —~—

6 // then that ObjCCL 'S run metnmo Alambda Can be passed

7 // Case 2: If this class is subclassed,

8 // in the subclass is called as a Runnable

9 void start() { ... } // Causes this thread t

10 void join() { ... } // Wait for this thread to «

11 void join(long m) // Wait at most m milliseconds for thread to die

12 static Thread currentThread() // Returns currently executing thread

13

14 }

COMP 322, Spring 2021 (M.Joyner)

8

2

start() and join() methods

* A Thread instance starts executing when its start() method is invoked

— start() can be invoked at most once per Thread instance

— As with async, the parent thread can immediately move to the next statement after invoking
t.start()

» At.join() call forces the invoking thread to wait till thread t completes.

— Lower-level primitive than finish since it only waits for a single thread rather than a collection
of threads

— No restriction on which thread performs a join on which thread, so it is possible to create a
deadlock cycle using join() even when there are no data races

COMP 322, Spring 2021 (M.Joyner)

O© 00 dJ O O B~ W NN =

=
~ ® -

Two-way Parallel Array Sum
using Java Threads

// Start of main thread
suml = 0; sum2 = 0; // suml & sum2 are static fields
Thread tl1 = new Thread(() -> {
// Child task computes sum of lower half of array
for(int 1=0; i1 < X.length/2; 1++) suml += X[1];
})s
tl.start();
// Parent task computes sum of upper half of array
for(int 1=X.length/2; 1 < X.length; i1++) sum2 += X[1];

. // Parent task waits for child task to complete (join)
. tl.join();
12.

return suml + sum2;

COMP 322, Spring 2021 (M.Joyner)

.}8
2

Compare with Two-way Parallel Array Sum
using HJ-Lib's finish & async API's

// Start of Task TO (main program)
suml = 0; sum2 = 0; // suml & sum2 are static fields
finish(() -> {
async(() -> {
// Child task computes sum of lower half of array
for(int 1=0; i1 < X.length/2; 1++) suml += X[1];
})s
// Parent task computes sum of upper half of array
for(int 1=X.length/2; i1 < X.length; 1++) sum2 += X[1];
10. });
11. // Parent task watits for child task to complete (join)
12. return suml + sum2;

O© 00 dJ O O B~ W NN =

N
2
8
B3

COMP 322, Spring 2021 (M.Joyner)

HJlib runtime uses Java threads as workers

Logical Work Queue
(asynC,S & Continuations) Local variables are
private to each task

push bl bl b d b A L y pull
work work

)))
(OO o

Workers w, W, W, W,

Static & instance fields are shared among tasks

HJlib runtime creates a small number of worker threads in a thread pool, typically one per core
Workers push async’s/continuations into a logical work queue

when an async operation is performed

when an end-finish operation is reached

Workers pull task/continuation work item when they are idle

COMP 322, Spring 2021 (M.Joyner)

78
Q.

Objects and Locks in Java — synchronized statements and methods

« Every Java object has an associated lock acquired via:

— synchronized statements

- synchronized(foo) { // acquire foo’s lock
// execute code while holding foo’s lock
} // release foo’s lock

— synchrontized methods

- public synchronized void opl() { // acquire ‘this’ lock
// execute method while holding ‘this’ lock
} // release ‘this’ lock

- Java language does not enforce any relationship between the object used for locking and objects
accessed in isolated code

— If same object is used for locking and data access, then the object behaves like a monitor

« Locking and unlocking are automatic
— Locks are released when a synchronized block exits
e By normal means: end of block reached, return, break

e When an exception is thrown and not caught

COMP 322, Spring 2021 (M.Joyner)

L ocking guarantees in Java

* |tis preferable to use java.util.concurrent.atomic or HJlib isolated constructs,
since they cannot deadlock

* Locks are needed for more general cases. Basic idea is for JVM to implement
synchronized(a) <stmt> as follows:

1. Acquire lock for object a

2. Execute <stmt>
3. Release lock for object a

* The responsibility for ensuring that the choice of locks correctly implements
the semantics of isolation lies with the programmer.

* The main guarantee provided by locks is that only one thread can hold a given
lock at a time, and the thread is blocked when acquiring a lock if the lock is

unavailable.

COMP 322, Spring 2021 (M.Joyner)

2

10

Deadlock example with Java synchronized statement

The code below can deadlock if LeftHand() and rightHand() are called concurrently from
different threads

— Because the locks are not acquired in the same order

public class ObviousDeadlock {

public void leftHand() { public void rightHand() {
synchronized (lockl) { synchronized (lock2) {
synchronized (lock2) { synchronized (lockl) {
for (int 1=0; 1<10000; i++) for (1int 1=0;, 1<10000; 1++)
sum += random.nextInt (100); sum += random.nextInt (100);

COMP 322, Spring 2021 (M.Joyner)

11

Deadlock avoidance in HJ with object-based isolation

HJ implementation ensures that all locks are acquired in the same order
==> no deadlock

public class ObviousDeadlock {
public void leftHand () { public void rightHand()
1solated (lockl, lock2) { 1solated (lock?2, lockl) {
for (int i=0; i<10000; 1i++) for (int 1=0; 1<10000; 1++)

sum += random.nextInt (100) ; sum += random.nextInt (100);

COMP 322, Spring 2021 (M.Joyner)

.-.98
2

12

Dynamic Order Deadlocks

There are even more subtle ways for threads to deadlock due to inconsistent lock ordering
— Consider a method to transfer a balance from one account to another:
public class SubtleDeadlock {
public vold transferFunds(Account from,
Account to,
int amount) {
synchronized (from) {
synchronized (to) {
from.subtractFromBalance(amount);
to.addToBalance(amount);

}

— What if one thread tries to transfer from A to B while another tries to transfer from B to A ?
Inconsistent lock order again — Deadlock!

COMP 322, Spring 2021 (M.Joyner)

13

Avoiding Dynamic Order Deadlocks

 The solutionis to induce a lock ordering
— Here, uses an existing unique numeric key, acctId, to establish an order
public class SafeTransfer {
public void transferFunds(Account from, Account to, int amount) {

Account firstLock, secondLock;
1f (fromAccount.acctId == toAccount.acctld)
throw new Exception(“Cannot self-transfer”);
else i1f (fromAccount.acctId < toAccount.acctId) {
firstLock = fromAccount;
secondLock = toAccount;

}
else {
firstLock = toAccount;
, secondLock = fromAccount;

synchronized (firstLock) {
synchronized (secondLock) {
from.subtractFromBalance(amount);
to.addToBalance(amount);

COMP 322, Spring 2021 (M.Joyner)

14

Java's Object Locks are Reentrant

Locks are granted on a per-thread basis
— Called reentrant or recursive locks
— Promotes object-oriented concurrent code

A synchronized block means execution of this code requires the current thread to hold this lock
— If it does — fine
— |If it doesn't — then acquire the lock

Reentrancy means that recursive methods, invocation of super methods, or local callbacks, don't deadlock
public class Widget {
public synchronized void doSomething() { ... }
}
public class LoggingWidget extends Widget {
public synchronized void doSomething() {
Logger.log(this + ": calling doSomething()");

doSomething(); // Doesn't deadlock!

}
}

COMP 322, Spring 2021 (M.Joyner)

.-.98
2

15

Worksheet #24: Java Threads and Data Races

1) Write a sketch of the pseudocode for a Java threads program that exhibits a data race using start()
and join() operations.

2) Write a sketch of the pseudocode for a Java threads program that exhibits a data race using
synchronized statements

COMP 322, Spring 2021 (M.Joyner)

