COMP 322: Fundamentals of Parallel Programming

Lecture 33: Point to Point Synchronization with Phasers

Mack Joyner and Zoran BudimliC
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 33 April 2022

http://comp322.rice.edu

Barrier vs Point-to-Point Synchronization in
One-Dimensional lterative Averaging Example

iter = | @ ¢ ¢ 06 0 6 6 06 66 o o o
iter = i+1 @ ¢ ¢ 06 0 6 6 06 66 o o o

Barrier synchronization

iter = | @ ©© © © ©© ©© ©© © ©° oo o o

K X KK XX XK AKX XX

ter=1+1 @ @ @ © © © © © © ¢ o o

Point-to-point synchronization

Question: Can the point-to-point computation graph result in a smaller CPL than the barrier
computation graph?

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

Barrier vs Point-to-Point Synchronization in
One-Dimensional lterative Averaging Example

iter = | @ ¢ ¢ 06 0 6 6 06 66 o o o

iter = i+1 @ ¢ ¢ 06 0 6 6 06 66 o o o

Barrier synchronization

Igl EI QE EI EI Q @ ¢ 0 0 ©
‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘X‘

E N E IR

iter = |

iter = 1+1

Question: Can the point-to-point computation graph result in a smaller CPL than the barrier
computation graph?

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

Phasers: a unified construct for barrier and point-to-point
synchronization

 HJ phasers unify barriers with point-to-point synchronization
— Inspiration for java.util.concurrent.Phaser
 Previous example motivated the need for “point-to-point” synchronization

— With barriers, phase | of a task waits for all tasks associated with the same barrier to
complete phase I-1

— With phasers, phase | of a task can select a subset of tasks to wait for

 Phaser properties
—Support for barrier and point-to-point synchronization

—Support for dynamic parallelism --- the ability for tasks to drop phaser registrations on
termination (end), and for new tasks to add phaser registrations (async phased)

— A task may be registered on multiple phasers in different modes

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

Simple Example with Four Async Tasks and One Phaser

1. finish (() ->{

2. ph =newPhaser(SIG_WAIT); // mode is SIG_WAIT

3. asyncPhased(ph.inMode(SIG), () ->{

4 // A1 (SIG mode)

5. doA1Phase1(); next(); doA1Phase2(); });

6. asyncPhased(ph.inMode(SIG_WAIT), () ->{

7. /I A2 (SIG_WAIT mode)

8. doA2Phasel(); next(); doA2Phase2(); });

9. asyncPhased(ph.inMode(HjPhaserMode.SIG_WAIT), () ->{
10. /[A3 (SIG_WAIT mode)

11. doA3Phasei(); next(); doA3Phase2(); });

12. asyncPhased(ph.inMode(HjPhaserMode. WAIT), () ->{
13. /[A4 (WAIT mode)

14. doA4Phasei(); next(); doA4Phase2(); });

15. });

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

Computation Graph Schema Simple Example with Four Async Tasks
and One Phaser

Semantics of next depends on registration mode
SIG_WAIT: next = signal + wait
SIG: next = signal
WAIT: next = walit

SIG SIG WAIT SIG WAIT WAIT
A1 Az Az Aq

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

Summary of Phaser Construct

Phaser allocation
— HjPhaser ph = newPhaser(mode);
— Phaser ph is allocated with registration mode

— Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

Registration Modes

— HjPhaserMode.SIG, HjPhaserMode . WAIT,
HjPhaserMode.SIG_WAIT, HjPhaserMode.SIG_WAIT_SINGLE

— NOTE: phaser WAIT is unrelated to Java wait/notify

Phaser registration
— asyncPhased (phy.inMode(<mode,>), ph,.inMode(<mode,>), ... () -> <stmt>)

— Spawned task is registered with phy in mode;, ph, in mode,, ...

— Child task’s capabilities must be subset of parent’s
— asyncPhased <stmt> propagates all of parent’s phaser registrations to child

Synchronization
— next();
— Advance each phaser that current task is registered on to its next phase
— Semantics depends on registration mode
— Barrier is a special case of phaser, which is why next is used for both

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

Capability Hierarchy

A task can be registered in one of four modes with respect to a phaser:
SIG_WAIT_SINGLE, SIG_WAIT, SIG, or WAIT. The mode defines the set of capabillities
— signal, wait, single — that the task has with respect to the phaser. The subset

relationship defines a natural hierarchy of the registration modes. A task can drop (but not
add) capabilities after initialization.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

TN

SIG ={signal } WAIT = { wait }

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

Left-Right Neighbor Synchronization (with m=3 tasks)

1.finish(() -> { // Task-0
final HjPhaser ph1 = newPhaser(SIG_WAIT
final HjPhaser ph2 = newPhaser(SIG_WAIT
final HjPhaser ph3 = newPhaser(SIG_WAIT);
asyncPhased(ph1.inMode(SIG),ph2.inMode(WAIT),
() ->{ doPhase1(1);

next(); // signals ph1, waits on ph2

doPhase2(1);
}); /[Task T1
10. asyncPhased(ph2.inMode(SIG),ph1.inMode(WAIT),ph3.inMode(WAIT),
11. () ->{doPhase1(2);
12. next(); // signals ph2, waits on ph1, ph3
13. doPhase2(2);
14. });// Task T2
15. asyncPhased(ph3.inMode(SIG),ph2.inMode(WAIT),
16. () ->{doPhase1(3);
17. next(); // signals ph3, waits on ph2
18. doPhase2(3);
19. });// Task T3
20.}); // finish

)
);
)
(

NVONO AW

8
5

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

@>}

Computation Graph for m=3 example
(without async-finish nodes and edges)

6 y 7-signal .
g=\ " /-walt " 8
ph1.next .| phi.next 3
-start(0->1) -end(0->1)
ph2.next | ph2.next %
-start(0->1) -end(0->1)
a’fl? . :‘4
X -Ql “'u » .
11 12-signal 1 12-wait 13
ph3.next ph3.next 7
-start(0->1) -end(0->1) |7 =
f”’7 s
> -QJ ‘ _
16 17-signal ‘4 17-wait { 18
continue signal wait
ey ——) >

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

11

forallPhased barrier is just an implicit phaser!

1. forallPhased(iLo, iHi, (i) ->{
2. S1;next(); S2; next(){...}

3. });

IS equivalent to

1. finish(() ->{

2. I/ Implicit phaser for forall barrier

3. final HjPhaser ph = newPhaser(SIG_WAIT);
4. forseq(iLo, iHi, (i) >{

9. asyncPhased(ph.inMode(SIG_WAIT), () ->{
6 S1; next(); S2; next(){...}

/

8

}); I/ next statements in async refer to ph

. });

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

.-.98
2

12

Announcements & Reminders

 Quiz #7 is due today at 11:59pm
« Hw #5 checkpoint 1 is now due Sunday, April 10th at 11:59pm

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

