COMP 322: Fundamentals of Parallel Programming (Spring 2019) Instructors: Mack Joyner, Zoran Budimlić Worksheet 4: due at end of class today

Name:

\qquad

Netid:

\qquad

Honor Code Policy: You are free to discuss all aspects of in-class worksheets with your other classmates, the teaching assistants and the professor during the class. You can work in a group and write down the solution that you obtained as a group. If you use any material from external sources, you must provide proper attribution.

Array Sum Speedup

- Assume T(S,P) = WORK (G,S)/P $+\mathrm{CPL}(\mathrm{G}, \mathrm{S})=(\mathrm{S}-1) / \mathrm{P}+\log 2(\mathrm{~S})$ for the parallel array sum computation shown in slide 4 (using the upper bound)
- Assume $\mathrm{S}=1024==>\log 2(\mathrm{~S})=10$
- Compute for $10,100,1000$ processors (round to 1 decimal place)

$$
\mathrm{T}(\mathrm{~S}, \mathrm{P})=(\mathrm{S}-1) / \mathrm{P}+\log 2(\mathrm{~S})=1023 / \mathrm{P}+10
$$

Speedup $(10)=T(1) / T(10)=$
Speedup $(100)=T(1) / T(100)=$
Speedup $(1000)=T(1) / T(1000)=$

- Why does the speedup not increase linearly in proportion to the number of processors?

