
COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Worksheet: Reverse Engineering a Parallel Program from a
Computation Graph (CG)

Write a parallel program that generates
exactly the same ordering constraints as
the computation graph shown. The
program should be written in pseudocode
using must finish and spawn annotations.
The CG nodes should be clearly identified
as statements in the program e.g., as
method calls A(), B(), etc. Since the CG
edges are not labeled as spawn, continue,
or join, you can make whatever
assumptions you choose about the edges
when writing your program. The only
requirement is that the ordering constraints
in your program coincide with those in the
graph. Submit solution in Canvas.

1

	

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

One Possible Solution to Worksheet

(Reverse Engineering a Computation Graph)

2

1.A();

2.must finish { // F1

3. spawn D();

4. B();

5. E();

6. must finish { // F2

7. spawn H();

8. F();

9. } // F2

10. G();

11.} // F1

12.C();

Observations:

•Any node with out-degree > 1 must be an async

(must have an outgoing spawn edge)

•Any node with in-degree > 1 must be an end-finish

(must have an incoming join edge

•Adding or removing transitive edges does not impact

ordering constraints

