
COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet: Use of trylock()
Rewrite the transferFunds() method below to use j.u.c. locks with calls to tryLock instead of synchronized.

Your goal is to write a correct implementation that never deadlocks, unlike the buggy version below (which
can deadlock).

Assume that each Account object already contains a reference to a ReentrantLock object dedicated to that
object e.g., from.lock() returns the lock for the from object. Sketch your answer using pseudocode.

1. public void transferFunds(Account from, Account to, int amount) {

2. synchronized (from) {

3. synchronized (to) {

4. from.subtractFromBalance(amount);

5. to.addToBalance(amount);

6. }

7. }

8. }

1

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet solution: Use of trylock()
Rewrite the transferFunds() method below to use j.u.c. locks with calls to tryLock instead of synchronized.

Your goal is to write a correct implementation that never deadlocks, unlike the buggy version below (which can deadlock).

Assume that each Account object already contains a reference to a ReentrantLock object dedicated to that object e.g.,
from.lock() returns the lock for the from object. Sketch your answer using pseudocode.

1. public void transferFunds(Account from, Account to, int amount) {

2. while (true) {

3. // assume that trylock() does not throw an exception

4. boolean fromFlag = from.lock.trylock();

5. if (!fromFlag) continue;

6. boolean toFlag = to.lock.trylock();

7. if (!toFlag) { from.lock.unlock(); continue; }

8. try { from.subtractFromBalance(amount);

9. to.addToBalance(amount); break; }

10. finally { from.lock.unlock(); to.lock.unlock(); }

11. } // while

12. }

2

