
COMP 322 Spring 2013

Lab 6: Barriers, Data-Driven Tasks
Instructor: Vivek Sarkar

Resource Summary

Course wiki: https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Staff Email: comp322-staff@mailman.rice.edu

Coursera Login: visit http://rice.coursera.org and log in via Shibboleth

Clear Login: ssh your-netid@ssh.clear.rice.edu and then login with your password

Sugar Login: ssh your-netid@sugar.rice.edu and then login with your password

Linux Tutorial visit http://www.rcsg.rice.edu/tutorials/

IMPORTANT: Please refer to the tutorial on Linux and SUGAR from Lab 5, before starting this lab. Also,
if you edit files on a PC or laptop, be sure to transfer them to SUGAR before you compile and execute them
(otherwise you may compile and execute a stale/old version).

As in past labs, create a text file named lab 6 written.txt in the lab 6 directory, and enter your timings
and observations there.

1 One-Dimensional Iterative Averaging Example Revisited with
Barriers

1. Download the OneDimAveraging.hj program from Lab 5 by typing the wget command,
wget http://www.cs.rice.edu/~vs3/downloads/OneDimAveraging.hj.

2. The code in OneDimAveraging.hj performs the iterative averaging computation discussed in the lec-
tures. This code performs a sequential version of the computation in method runSeq() and a parallel
chunked for-finish-forasync–for version in method runChunkedForkJoin.

3. Your assignment is to create a more efficient SPMD version of runChunkedForkJoin() by using a
forall loop with a barrier (next) operation instead. Call this version runSPMD().

See slide 8 in Lecture 13 for the general approach, with the forall loop at the outermost level. Pay
special attention to the use of myVal and myNew as local pointers, so as to avoid data races on shared
fields, gVal and gNew in the SPMD version.

4. The input arguments for the main method in this program are as follows:

(a) tasks = number of chunks to be used for chunked parallelism. The default value for tasks is
Runtime.getNumOfWorkers(), which is the number of workers w specified with the “-places
1 : w” option (default is w = 8 on SUGAR).

(b) n = problem size. Iterative averaging is performed on a one-dimensional array of size (n+2) with
elements 0 and n+1 initialized to 0 and 1 respectively. The final value expected for each element
i is i/(n + 1). The default value for n is 1,000,000.

(c) iterations = number of iterations needed for convergence. The default value is 2,000. This
default was set for expediency. For this synthetic problem, you typically many more iterations to
guarantee convergence.

1 of 4

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
http://rice.coursera.org
http://www.rcsg.rice.edu/tutorials/
http://www.cs.rice.edu/~vs3/downloads/OneDimAveraging.hj

COMP 322
Spring 2013

Lab 6: Barriers, Data-Driven Tasks

(d) rounds = number of repetitions for the entire computation. As discussed earlier, these repetitions
are needed for timing accuracy. The default value is 3. For 3 repetitions, a reasonable approach
is to just report the minimum time observed.

5. You should run your program on SUGAR, to evaluate the parallelization. As before, you can compile
the program as follows:

hjc OneDimAveraging.hj

To run the program using 8 cores, use the following command on a compute node:

hj -places 1:8 OneDimAveraging

6. Record in lab 5 written.txt the best sequential and SPMD-parallel times observed for the default
inputs (using 8 cores), and then compute their ratio as the speedup. Compare your results for run-
SPMD() with the results that you obtained in Lab 5 for runChunkedForkJoin().

2 Data-Driven Tasks

Download the following files to prepare for this section of the lab:

1. wget http://www.cs.rice.edu/~vs3/downloads/MatrixEval.hj

2. wget http://www.cs.rice.edu/~vs3/downloads/MatrixEvalDDF.hj

3. wget http://www.cs.rice.edu/~vs3/downloads/test.txt

4. wget http://www.cs.rice.edu/~vs3/downloads/test0.txt

2.1 Matrix Expression Language

We have provided a sequential program, MatrixEval.hj, to evaluate matrix expressions consisting of the
following terms and operators:

• The only leaf terms supported are identifiers which can be of two forms:

Identity Matrix: An identifier of the form m〈num1〉 represents a square identity matrix of size
〈num1〉×〈num1〉. For example, m100 represents the 100 × 100 identity matrix. (The expres-
sion language has no variable declarations, so there’s no significance to the name m other than
the fact that it denotes a matrix.)

Random Matrix: An identifier of the form m〈num1〉x〈num2〉s〈seed〉 represents a random matrix of
size 〈num1〉×〈num2〉, for which the elements are generated using java.util.Random starting with
an integer (long) seed, and calling nextInt() to generate successive elements of the matrix. For
example, m100x200s5 represents the 100 × 200 random matrix generated using 5 as the initial
seed.

• The + operator represents matrix addition. An exception is thrown if the matrices don’t have the
same dimension sizes i.e., if they are not conformable. Otherwise, the matrix sum is returned.

• The − operator represents matrix subtraction. An exception is thrown if the matrices don’t have the
same dimension sizes i.e., if they are not conformable. Otherwise, the matrix difference is returned.

• The ∗ operator represents matrix multiplication. An exception is thrown if the number of columns in
the first matrix operand does not equal the number of rows in the second matrix operand i.e., if they
are not compatible for matrix multiplication. Otherwise, the matrix product is returned.

2 of 4

http://www.cs.rice.edu/~vs3/downloads/MatrixEval.hj
http://www.cs.rice.edu/~vs3/downloads/MatrixEvalDDF.hj
http://www.cs.rice.edu/~vs3/downloads/test.txt
http://www.cs.rice.edu/~vs3/downloads/test0.txt

COMP 322
Spring 2013

Lab 6: Barriers, Data-Driven Tasks

• Usual precedence and evaluation rules apply for the above operators, and parentheses can also be used.

As an example, “m3 + m3 * m3”, will be evaluated as follows:1 0 0
0 1 0
0 0 1

 +

1 0 0
0 1 0
0 0 1

×
1 0 0

0 1 0
0 0 1

 =

2 0 0
0 2 0
0 0 2


2.2 Recap of Data-Driven Tasks

Data-driven tasks were covered in Lecture 13. To use this feature, be sure to include the following import
statement at the start of your program: “import hj.lang.DataDrivenFuture;”

This extension is enabled by adding an await clause to the async statement as follows:

async await (DDF a, DDF b, · · ·) 〈 statement 〉

Each of DDF a, DDF b, · · · is an instance of the standard DataDrivenFuture class in HJ. A DDF acts as a
container for a single-assignment value, like regular future objects. However, unlike future objects, DDF’s
can be used in an await clause, and any async task can be a potential producer for a DDF (though only
one task can be the actual producer at runtime because of the single-assignment property).

2.3 Your assignment — understanding the Parallelization of MatrixEval using Data-Driven
Tasks

The code in MatrixEval.hj parses the input expression, and then calls the eval() methods to evaluate
the expression. The major potential for parallelism is in the eval() method in class Binary, shown in
Listing 1. Given the semantics of expression evaluation, the calls to lft.eval() and rgt.eval() can
execute in parallel.

The purpose of this part of the lab is to for you to understand how MatrixEval can be parallelized with the
async await feature using data-driven tasks (DDTs) and data-driven futures (DDFs) (Lecture 13). To that
end, we have provided the DDF-parallel version of MatrixEval.hj in MatrixEvalDDF.hj. Your assignment is
as follows:

1. Summarize the significant differences between MatrixEval.hj (sequential version) and MatrixEvalDDF.hj
(parallel version). Write your observations in lab 6 written.txt. Ignore trivial differences that arise
due to the differences in class names (MatrixEval.hj vs. MatrixEvalDDF.hj). Instead, try to understand
how the parallelization works using data-driven tasks.

If it helps, you can use the following diff command,

diff -w MatrixEval.hj MatrixEvalDDF.hj

to see the differences between the two files.

2. Perform the necessary setup for executing these programs on SUGAR. All programs executions below
(“hj . . .”) must be performed on a compute node (obtained using the “qsub -I . . .” command discussed
in Lab 5).

3. Evaluate the performance of the sequential version, MatrixEval.hj

hjc MatrixEval.hj

hj -places 1:1 MatrixEval test.txt

4. Evaluate the performance of the parallel version, MatrixEvalDDF.hj

3 of 4

COMP 322
Spring 2013

Lab 6: Barriers, Data-Driven Tasks

hjc MatrixEvalDDF.hj

hj -places 1:8 MatrixEvalDDF test.txt

What speedups do you see with parallelization? Enter your results in lab 6 written.txt.

5. You’re welcome to test these sequential and parallel versions with other input expressions, both for
correctness (with small matrices) and for performance (with larger matrices).

1 public MatrixEval . Matrix eva l () {
2 switch (opr) {
3 case Lex i ca l . p lus :
4 return MatrixEval . matrixAdd (l f t . eva l () , r g t . eva l ()) ;
5 case Lex i ca l . minus :
6 return MatrixEval . matrixMinus (l f t . eva l () , r g t . eva l ()) ;
7 case Lex i ca l . t imes :
8 return MatrixEval . matr ixMult ip ly (l f t . eva l () , r g t . eva l ()) ;
9 default :

10 e r r o r (”Unhandled binary operator ”) ;
11 }
12 return null ;
13 }

Listing 1: Sequential implementation of eval() method in class Binary

3 Turning in your lab work and quiz

As in previous labs, you will need to complete a quiz on Coursera and turn in your work before leaving, as
follows:

1. Visit rice.coursera.org, select ”Fundamentals of Parallel Programming” course, and take the Lab 6
quiz.

2. Check that all the work for today’s lab is in the lab 6 directory. If not, make a copy of any missing
files/folders there. It’s fine if you include more rather than fewer files — don’t worry about cleaning
up intermediate/temporary files.

3. Before you leave, create a zip file of your work by changing to the parent directory for lab 6/ and
issuing the following command, “zip -r lab 6.zip lab 6”.

4. Use the turn-in script to submit the contents of the lab 6.zip file as a new lab 6 directory in your
turnin repository as explained in Lab 1. You can always examine the most recent contents of your svn
repository by visiting https://svn.rice.edu/r/comp322/turnin/S13/your-netid.

4 of 4

http://rice.coursera.org

	One-Dimensional Iterative Averaging Example Revisited with Barriers
	Data-Driven Tasks
	Matrix Expression Language
	Recap of Data-Driven Tasks
	Your assignment — understanding the Parallelization of MatrixEval using Data-Driven Tasks

	Turning in your lab work and quiz

