
COMP 322 Spring 2013

Lab 9: Java Threads
Instructor: Vivek Sarkar

Resource Summary

Course wiki: https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Staff Email: comp322-staff@mailman.rice.edu

Clear Login: ssh your-netid@ssh.clear.rice.edu and then login with your password

Sugar Login: ssh your-netid@sugar.rice.edu and then login with your password

Linux Tutorial visit http://www.rcsg.rice.edu/tutorials/

IMPORTANT: Please refer to the tutorial on Linux and SUGAR from Lab 5, as needed. Also, if you edit
files on a PC or laptop, be sure to transfer them to SUGAR before you compile and execute them (otherwise
you may compile and execute a stale/old version on SUGAR).

As in past labs, create a text file named lab 9 written.txt in the lab 9 directory, and enter your timings
and observations there.

1 Conversion to Java Threads: N-Queens

1. Download the nqueens.hj program from the course web site (scroll down to Lab 9). This version uses
finish and async constructs along with AtomicInteger calls.

2. Convert it to a pure Java program by using Java threads instead of finish/async, using the concepts
introduced in Lectures 24 and 25. (The AtomicInteger calls can stay unchanged.) For simplicity, you
can include joins within each call to nqueens kernel(). This is correct, but more restrictive than the
finish/async structure for the given code. But it simplifies parallelization when using Java threads.

If you wish to try and simulate a finish more accurately, you can do so by collecting all thread objects
in a ConcurrentLinkedQueue data structure (see Lecture 20) and calling join() on each of them at
the end of the computation.

3. Compile and run the program as follows to solve the N-Queens problem on a 12×12 board (default
value).
javac nqueens.java

java nqueens

4. Compare the execution time of three versions of NQueens:

(a) java nqueens 14 5 0

This should correspond to the sequential execution of your Java program since the third argument
(= 0) is the cutoff value.

(b) java nqueens 14

This is a parallel Java run with the default cutoff value of 3. Try experimenting with different
values for cutoff value if needed.

(c) hj nqueens 14

This is a parallel HJ run with the default cutoff value of 3. (It is recommended that you use
separate directories for compiling the Java and HJ versions so as to avoid any possible interference
among classfiles generated for both versions.)

1 of 2

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
mailto:comp322-staff@mailman.rice.edu
http://www.rcsg.rice.edu/tutorials/


COMP 322
Spring 2013

Lab 9: Java Threads

2 Conversion to Java threads: Spanning Tree

1. Download the spanning tree atomic.hj solution from the course web site (scroll down to Lab 9).
This version uses finish and async constructs along with AtomicReference calls.

2. Convert it to a pure Java program by using Java threads instead of finish/async, using the concepts
introduced in Lectures 24 and 25. (The AtomicReference calls can stay unchanged.) As before, you can
include joins within each call to compute() for simplicity, or you can use a ConcurrentLinkedQueue

for a more faithful simulation of a finish construct.

3. Compile and run the programs as follows with the default input size.
javac spanning tree atomic.java

java spanning tree atomic

4. Compare the execution time of three versions of the spanning tree example. You may choose to add
cutoff threshold values for this program as was done for N-Queens, so as to limit the number of Java
threads that will be created:

(a) java spanning tree atomic 50000 1000

This is a parallel Java run. If you add support for a cutoff value, you can experiment with
different cutoff values.

(b) hj spanning tree atomic 50000 1000

This is a parallel HJ run. If you used a cutoff value for the parallel Java run above, you should
also add it for this HJ version. (It is recommended that you use separate directories for compiling
the Java and HJ versions so as to avoid any possible interference among classfiles generated for
both versions.)

3 Programming Tips and Pitfalls for Java Threads

• Recall that any local variable from an outer scope that is accessed in an anonymous class (e.g., in the
run() method) must be declared final.

• Remember to call the start() method on any thread that you create. Otherwise, the thread’s compu-
tation does not get executed.

• Since the join() method may potentially throw an InterruptedException, you will either need to include
each call to join() in a try-catch block, or add a throws InterruptedException clause to the definition of
the method that includes the call to join().

4 Turning in your lab work

1. NOTE: there is no quiz for Lab 9, since Homework 4 and the lecture quiz are both due on Friday.

2. Check that all the work for today’s lab is in the lab 9 directory. If not, make a copy of any missing
files/folders there. It’s fine if you include more rather than fewer files — don’t worry about cleaning
up intermediate/temporary files.

3. Before you leave, create a zip file of your work by changing to the parent directory for lab 9/ and
issuing the following command, “zip -r lab 9.zip lab 9”.

4. Use the turn-in script to submit the contents of the lab 9.zip file as a new lab 9 directory in your
turnin repository as explained in Lab 1. You can always examine the most recent contents of your svn
repository by visiting https://svn.rice.edu/r/comp322/turnin/S13/your-netid.

2 of 2


	Conversion to Java Threads: N-Queens
	Conversion to Java threads: Spanning Tree
	Programming Tips and Pitfalls for Java Threads
	Turning in your lab work 

