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Announcements
• No lecture on Friday, Feb 22nd.

• No labs or lab quizzes this week

• No new lecture quiz this week.  The lecture quiz for Weeks 5 & 6 is 
due by Tuesday night.

• Homework 3 is due by by 11:55pm on Friday, February 22, 2013

• Take-home midterm exam (Exam 1) will be given after lecture on 
Wednesday, February 20, 2013
—will need to be returned to Sherry Nassar (Duncan Hall 3137) by 4pm 

on Friday, February 22, 2013
—Closed-book, closed computer written exam that can be taken in any 

2-hour duration during that period
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Scope of Midterm Exam
• Midterm exam will cover material from Lectures 1 - 15

—Lecture 16 on Phaser Accumulators and Bounded Phasers is excluded

• Excerpts from midterm exam instructions
—“Since this is a written exam and not a programming assignment, 

syntactic errors in program text will not be penalized (e.g., missing 
semicolons, incorrect spelling of keywords, etc) so long as the 
meaning of your solution is unambiguous.”

—“If you believe there is any ambiguity or inconsistency in a question, 
you should state the ambiguity or inconsistency that you see, as well 
as any assumptions that you make to resolve it.”
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Async and Finish Statements for Task 
Creation and Termination (Lecture 1)

async  S

• Creates a new child task that 
executes statement S

finish S  
§ Execute S, but wait until all 

asyncs in S’s scope have 
terminated. 

// T0(Parent task)
STMT0;
finish {   //Begin finish
  async { 
    STMT1; //T1(Child task)
  } 
  STMT2;   //Continue in T0
                 //Wait for T1
}          //End finish
STMT3;     //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0
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Worksheet #1 solution: 
Insert finish to get correct Two-way Parallel Array Sum program 

1.  // Start of Task T0 (main program)

2.  sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3.  finish {

4.    async { // Task T1 computes sum of upper half of array

5.      for(int i=X.length/2; i < X.length; i++) 

6.        sum2 += X[i];

7.    }

8.    // T0 computes sum of lower half of array

9.    for(int i=0; i < X.length/2; i++) sum1 += X[i];

10. } 

11. // Task T0 waits for Task T1 (join)

12. return sum1 + sum2;

5
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Solution to Homework 1, Question 1.1
• ... insert finish statements in the incorrect parallel version so as to 

make it correct i.e., to ensure that the parallel version computes 
the same result as the sequential version, while maximizing the 
potential parallelism.

• One possible solution:
0. finish 
1.    for (int I = 0 ; I < N ; I++) 
2.        for (int J = 0 ; J < N ; J++)
3.            async C[I][J] = 0;
4. 
5. finish 
6.    for (int I = 0 ; I < N ; I++)
7.        for (int J = 0 ; J < N ; J++) 
8.            async
9.                for (int K = 0 ; K < N ; K++)
10.                    C[I][J] += A[I][K] * B[K][J];
11. 
12.System.out.println(C[0][0]);
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Computation Graphs for HJ Programs 
(Lecture 2) 

• A Computation Graph (CG) captures the dynamic execution 
of an HJ program, for a specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any async, 

begin-finish and end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
—  “Spawn” edges connect parent tasks to child async tasks
—  “Join” edges connect the end of each async task to its IEF’s 

end-finish operations

• All computation graphs must be acyclic
—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic 
graphs” (dags)
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Complexity Measures for Computation Graphs
Define
• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when 
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path 

length)
—CPL(G) is also the smallest possible execution time 

for the computation graph
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Ideal Parallelism

Define ideal parallelism of 
Computation G Graph as the 
ratio, WORK(G)/CPL(G)

Ideal Parallelism is independent 
of the number of processors that 
the program executes on, and 
only depends on the computation 
graph

1
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Solution to Worksheet #2: what is the critical path length
and ideal parallelism of this graph?

• time(N) is labeled for all nodes N in the graph
1

1

1

4
WORK(G) = 26

CPL(G) = 11

Ideal Parallelism 
= WORK(G)/CPL(G) 
= 26 / 11 ~ 2.36   

41

1 1 1

31

1

1

1

1

1

1

1

CPL(G) = length of a longest path in computation graph G
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Solution to Homework 1, Question 1.2.1
• Calculate the total WORK and 

CPL (critical path length) for this 
task graph.  Each node is labeled 
with the steps name and execution 
time e.g., B(2) refers to step B with 
an execution time of 2 units.

• WORK = 12

• CPL = 8
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Solution to Homework 1, Question 1.2.2
• Write a Habanero-Java program with basic finish and async 

constructs (no futures) that can generate this computation graph.

• One possible solution:
1.  finish {

2.     A;

3.     async D;

4.     B;

5.     async {

6.        E;

7.        finish { async H; F; }

8.        G; 

9.     }

10. } 

11. C;

12
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Bounding the performance of Greedy Schedulers 
(Lecture 3)

Combine lower and upper bounds to get 

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution 
time TP that is within a factor of 2 of the optimal time 
(since max(a,b) and (a+b) are within a factor of 2 of each 
other, for any a ≥ 0,b ≥ 0 ).

Corollary 2:  Lower and upper bounds approach the same 
value whenever 

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism,  WORK(G)/CPL(G) << P  
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Strong Scaling and Speedup

• Define Speedup(P) = T1 / TP

—Factor by which the use of P processors speeds 
up execution time relative to 1 processor, for a 
fixed input size

—For ideal executions without overhead,                  
1 <= Speedup(P) <= P

—Linear speedup 
– When Speedup(P) = k*P, for some constant k,   

0 < k < 1

• Referred to as “strong scaling” because input size is 
fixed

14



COMP 322, Spring 2013 (V.Sarkar)15

Reduction Tree Schema for computing 
Array Sum in parallel

Assume input array size = S, and each add takes 1 unit of time:

• WORK(G) = S-1
• CPL(G) = log2(S)

• Assume TP = WORK(G)/P + CPL(G) = (S-1)/P + log2(S)

• Within a factor of 2 of any schedule’s execution time
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Implementation of Reduction Tree Schema in HJ
(ArraySum1)

1.for ( int stride = 1; stride < X.length ; stride *= 2 ) {

2.  // Compute size = number of adds to be performed in stride

3.  int size=ceilDiv(X.length,2*stride);

4.  finish for(int i = 0; i < size; i++)

5.    async {

6.      if ( (2*i+1)*stride < X.length )

7.        X[2*i*stride] += X[(2*i+1)*stride]; 

8.    } // finish-for-async

9.} // for

10. 

11.// Divide x by y, and round up to next largest int

12.static int ceilDiv(int x, int y) { return (x+y-1) / y; }
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Solution to Worksheet #3: Strong Scaling for Array Sum

• Assume T(S,P) ~ WORK(G,S)/P + CPL(G,S) = (S-1)/P + log2(S) for a  
parallel array sum computation with input size S on P processors

• Strong scaling
—Assume S = 1024 ==> log2(S) = 10
—Compute Speedup(P) for S=1024 on 10, 100, 1000 processors

– T(P) = 1023/P + 10
– Speedup(10) = T(1)/T(10) ~ 9.2
– Speedup(100) = T(1)/T(100) ~ 51.1 
– Speedup(1000) = T(1)/T(1000) ~ 102.3

– Ideal parallelism = T(1)/T(∞) = 1033/10 = 103.3

—Why is it worse than linear?
– The critical path limits speedup as P increases (speedup is limited 

by ideal parallelism)
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Week 1 Lecture Quiz Solution

18



COMP 322, Spring 2013 (V.Sarkar)

How many processors should we use?
(Lecture 4)

• Efficiency(P) = Speedup(P)/ P = T1/(P * TP)
—Processor efficiency --- figure of merit that indicates how well a 

parallel program uses available processors
—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

• Half-performance metric
—S1/2 = input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to 

obtain efficient parallelism
—A larger value of S1/2 indicates that the problem is harder to parallelize 

efficiently

• How many processors to use?
—Common goal: choose number of processors, P for a given input size, 

S, so that efficiency is at least 0.5

19
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ArraySum: Speedup as function of array 
size, S, and number of processors, P

• Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))

• Asymptotically, Speedup(S,P) --> S/log2S, as P --> infinity

P
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Solution to Worksheet #4: how many processors 
should we use for ArraySum?

For ArraySum on P processors and input array size, S,
Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))
• Question: For a given N, what value of P should we choose 

to obtain Efficiency(P) = 0.5?  Recall that Efficiency(P) = 0.5 
⇒ Speedup(N,P)/P = 0.5.

• Answer (derive value of P as a symbolic function of N):
. . . ⇒ P = N/log2(N)

• Check answer by observing that N/P = log2(N) ⇒

Speedup(N,P) = N/(log2(N) + log2(N)) = N/(2*log2(N)) = P/2
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Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be 

executed sequentially for a given input size S, then the best speedup 
that can be obtained for that program is Speedup(S,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on 
parallel execution time
— CPL >= q * T(S,1)
— T(S,P) >= q * T(S,1) 
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in 
program can be divided into sequential and parallel portions
—Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)
—Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into 
account
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Homework 2, Question 1.1
• In Lecture 4, you learned the following statement of Amdahl’s Law:

—If q ≤ 1 is the fraction of WORK in a parallel program that must be 
executed sequentially, then the best speedup that can be obtained for 
that program, even with an unbounded number of processors, is 
Speedup ≤ 1/q.

• Now, consider the following generalization of Amdahl’s Law. Let q1 
be the fraction of WORK in a parallel program that must be 
executed sequentially, and q2 be the fraction of WORK that can 
use at most 2 processors.  Assume that the fractions of WORK 
represented by q1 and q2 are disjoint. Your assignment is to 
provide an upper bound on the Speedup as a function of q1 and 
q2, and justify why it is a correct upper bound. (Hint: to check your 
answer, consider the cases when q1=0 or q2=0.)

23
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Solution to Homework 2, Question 1.1
• Total WORK can be divided into three categories
— q1*WORK = work that must be executed sequentially
— q2*WORK = work can can use at most 2 processors
— (1-q1-q2)*WORK = work that can use an unbounded number of processors

• Lower bound on execution time on P processors
— T( p ) >= q1*WORK + q2*WORK/2 + (1-q1-q2)*WORK/P

• Upper bound on Speedup
— Speedup(P) =  T(1) / T(P) 
—                      <= WORK / (q1*WORK + q2*WORK/2 + (1-q1-q2)*WORK/P)
⇒  SpeedUp(P) <= 1/ (q1 + q2/2 + (1-q1 - q2) / P) <= 1/(q1 + q2/2)

24



COMP 322, Spring 2013 (V.Sarkar)

Weak Scaling
• Consider a computation graph, CG, in which all node execution 

times are parameterized by input size S
—TIME(N,S) = time to execute node N with input size S
—WORK(G,S) = sum of TIME(N,S) for all nodes N
—CPL(G,S) = critical path length for G, assuming node N takes 

TIME(N,S)

• Let T(S,P) = time to execute CG with input size S on P processors 

• Weak scaling
—Allow input size S to increase with number of processors i.e., make S a 

function of P
—Define Weak-Speedup(S(P),P) = T(S(P),1)/T(S(P),P), where input size 

S(P) increases with P
– Note that T(S(P),1) is a hypothetical projection of running a larger 

problem size, S(P), on 1 processor

25
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Weak Scaling for Array Sum
• Recall that T(S,P) = (S-1)/P + log2(S) for a  parallel array sum computation

• For weak scaling, assume S(P) = 1024*P 

==> Weak-Speedup(S(P),P) = T(S(P),1)/T(S(P),P) 

    = ((1024*P-1)+log2(1024*P)) / ((1024*P-1)/P+log2(1024*P)) ~ P

1.E+00&

1.E+01&

1.E+02&

1.E+03&

1.E+04&

1.E+05&

1.E+06&

1.E+00& 1.E+01& 1.E+02& 1.E+03& 1.E+04& 1.E+05& 1.E+06&

Weak%Speedup*as*a*func/on*of*P*



COMP 322, Spring 2013 (V.Sarkar)27

Formal Definition of Data Races
(Lecture 5)

 Formally, a data race occurs on location L in a program 
execution with computation graph CG if there exist steps 
(nodes) S1 and S2 in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1 

i.e., there is no path of dependence edges from S1 to S2 or 
from S2 to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the 
accesses is a write.  (L must be a shared location i.e., a 
static field, instance field, or array element.)

 Data races are challenging because of
• Nondeterminism: different executions of the parallel 

program with the same input may result in different outputs.
• Debugging and Testing: it is usually impossible to guarantee 

that all possible orderings of the accesses to a location will 
be encountered during program debugging and testing.
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Relating Data Races and Determinism
• A parallel program is said to be deterministic with respect to 

its inputs if it always computes the same answer when given 
the same inputs.

• Structural Determinism Property
—If a parallel program is written using the constructs in Module 1 and is 

guaranteed to be race-free, then it must be deterministic with respect 
to its inputs. The final computation graph is also guaranteed to be the 
same for all executions of the program with the same inputs.

• Constructs introduced in Module 1 (“Deterministic Shared-
Memory Parallelism”) include async, finish, finish 
accumulators, futures, data-driven tasks (async await), 
forall, barriers, phasers, and phaser accumulators. 
—The notable exceptions are critical sections, isolated statements, and 

actors, all of which will be covered in Module 2 (“Nondeterministic 
Shared-Memory Parallelism”)

28
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Solution to Worksheet #5: Data Races and Determinism
Consider a modified String Search program that returns true if any occurrence is 

found, rather than the count of all occurrences:
1. static boolean found = false; // static field

2. . . .

3. finish for (int i = 0; i <= N - M; i++)

4.   async { 

5.     int j;

6.     for (j = 0; j < M; j++) 

7.       if (text[i+j] != pattern[j]) break; 

8.     if (j == M) found = true; // found at offset i

9.   } // finish-for-async
Questions: 
1. Does this program have a data race?  
    Yes.  Multiple async tasks can write to the same static field, found.
2. Is it deterministic?
    Yes.  The answer will be the same regardless of the order of the writes. 
3. Is it structurally deterministic?
    Yes.  The computation graph will always be the same for the same input.
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HJ Futures: Tasks with Return Values
(Lecture 6)

async<T> { Stmt-Block }

• Creates a new child task that 
executes Stmt-Block, which 
must terminate with a return 
statement returning a value of 
type T

• Async expression returns a 
reference to a container of 
type future<T>

• Values of type future<T> can 
only be assigned to final 
variables

Expr.get()
• Evaluates Expr, and blocks if 

Expr’s value is unavailable
• Expr must be of type 

future<T>
• Return value from Expr.get() 

will then be T
• Unlike finish which waits for 

all tasks in the finish scope, a 
get() operation only waits for 
the specified async 
expression
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Computation Graph for Two-way Parallel 
Array Sum using Future Tasks

NOTE: DrHJ’s data race detection tool does not support futures as yet 
(it only supports finish, async, and isolated constructs)
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Worksheet #6 solution: Computation Graphs 
for Async-Finish and Future Constructs

A

B C

D E

F

1) Can you write an HJ 
program with async-finish 
constructs that generates a 
Computation Graph with the 
same ordering constraints as 
the graph on the right?  
No 

2) Can you write an HJ 
program with future async-
get constructs that generates 
a Computation Graph with 
the same ordering 
constraints as the graph on 
the right?  If so, provide a 
sketch of the program.
Yes, see program sketch with 
void futures.  A dummy 
return value can also be 
used.

1. // Return statement is optional for void futures

2. final future<void> a = async<void> { A;};

3. final future<void> b = async<void> { a.get(); B;};

4. final future<void> c = async<void> { a.get(); C;};

5. final future<void> d = async<void> { b.get();

6.                                      c.get(); D;};

7. final future<void> e = async<void> { c.get(); E;};

8. final future<void> f = async<void> { d.get();

9.                                      e.get(); F;};

10. f.get(); // Or wrap lines 1-9 in finish
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Week 2 Lecture Quiz Solution: Question 1

33
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Week 2 Lecture Quiz Solution: Question 2
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Week 2 Lecture Quiz Solution: Question 3
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Week 2 Lecture Quiz Solution: Question 3 
(contd)
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Week 2 Lecture Quiz Solution: Question 4

37
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Worksheet #7 solution: Why must 
Future References be declared as final?

1. static future<int> f1=null; 

2. static future<int> f2=null;

3. 

4. void main(String[] args) {

5.   f1 = async<int> {return a1();};

6.   f2 = async<int> {return a2();};

7. }

8. 

9. int a1() { // Task T1

10.  while (f2 == null); // spin loop

11.  return f2.get(); //T1 waits for T2

12. }

13. 

14. int a2() { // Task T2

15.  while (f1 == null); // spin loop

16.  return f1.get(); //T2 waits for T1

17. }

1) Consider the code on the right with 
futures declared as non-final static 
fields (though that’s not permitted in 
HJ). Can a deadlock situation occur 
between tasks T1 and T2 with this 
code?  Explain why or why not.

Yes, a deadlock can occur when future 
f1 does f2.get() and future f2 does 
f1.get().

WARNING: such “spin” loops are an 
example of bad parallel programming 
practice in application code (they 
should only be used by expert systems 
programmers, and even then sparingly)
Their semantics depends on the 
memory model.  In HJ’s memory model, 
there’s no guarantee that the above 
spin loops will ever terminate.  

deadlock
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Worksheet #7 solution: Why must 
Future References be declared as final 

1. void main(String[] args) {

2.   final future<int> f1 = 

3.     async<int> {return a1();};

4.   final future<int> f2 = 

5.     async<int> {return a2(f1);};

6. }

7. 

8.  int a1() {  

9.  // Task T1 cannot receive a 

10. // reference to f2

11. 

12. }

13. 

14. int a2(future<int> f1) { 

15. // Task T2 can receive a reference

16. // to f1 but that won’t cause

17. // a deadlock.

18. ... f1.get() ...

19. }

2) Now consider a modified version of 
the above code in which futures are 
declared as final local variables (which 
is permitted in HJ).  Can you add get() 
operations to methods a1() and a2() to 
create a deadlock between tasks T1 and 
T2 with this code?  Explain why or why 
not.

No, the final declarations make it 
impossible for future f1’s task (T1) to 
receive a reference to f2.

Will your answer be different if f1 and f2 
are final fields in objects or final static 
fields?

No.
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Finish Accumulators (Lecture 7)
• Creation

      accumulator ac = accumulator.factory.accumulator(operator, type);
– operator can be Operator.SUM, Operator.PROD, Operator.MIN, Operator.MAX or 

Operator.CUSTOM
★ You may need to use the fully qualified name, accumulator.Operator.SUM, in your 

code if you don’t have the appropriate import statement
– type can be int.class or double.class for standard operators or any object that 

implements a “reducible” interface for CUSTOM

• Registration
      finish (ac1, ac2, ...) { ... }

– Accumulators ac1, ac2, ... are registered with the finish scope

• Accumulation

      ac.put(data);
– can be performed by any statement in finish scope that registers ac

• Retrieval

      Number n = ac.get();
– get() is nonblocking because finish provides the necessary synchronization

Either returns initial value before end-finish or final value after end-finish
– result from get() will be deterministic if CUSTOM operator is associative and 

commutative

40
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Sequential solution for NQueens
(Lecture 8) 

1.  static int count;

2.  . . .

3.  count = 0;

4.  nqueens_kernel(new int[0], 0);

5.  System.out.println(“No. of solutions = “ + count);

6.  . . .

7.  void nqueens_kernel(int [] a, int depth) {

8.    if (size == depth) count++;

9.    else

10.     /* try each possible position for queen at depth */

11.     for (int i =  0; i < size; i++) {

12.       /* allocate a temporary array and copy array a into it */

13.       int [] b = new int [depth+1];

14.       System.arraycopy(a, 0, b, 0, depth);

15.       b[depth] = i;

16.       if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17.     } // for-async

18. } // nqueens_kernel()

41
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Parallel Solution to NQueens with Finish 
Accumulators (counting all solutions)

1.  static accumulator count;

2.  . . .

3.  count = accumulator.factory.accumulator(SUM, int.class);

4.  finish(count) nqueens_kernel(new int[0], 0);

5.  System.out.println(“No. of solutions = “ + count.get().intValue());

6.  . . .

7.  void nqueens_kernel(int [] a, int depth) {

8.    if (size == depth) count.put(1);

9.    else

10.     /* try each possible position for queen at depth */

11.     for (int i =  0; i < size; i++) async {

12.       /* allocate a temporary array and copy array a into it */

13.       int [] b = new int [depth+1];

14.       System.arraycopy(a, 0, b, 0, depth);

15.       b[depth] = i;

16.       if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17.     } // for-async

18. } // nqueens_kernel()

42


