
COMP 322: Fundamentals of
Parallel Programming

Lecture 17: Midterm Review (Part 1)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 17 18 February 2013

COMP 322, Spring 2013 (V.Sarkar)2

Announcements
• No lecture on Friday, Feb 22nd.

• No labs or lab quizzes this week

• No new lecture quiz this week. The lecture quiz for Weeks 5 & 6 is
due by Tuesday night.

• Homework 3 is due by by 11:55pm on Friday, February 22, 2013

• Take-home midterm exam (Exam 1) will be given after lecture on
Wednesday, February 20, 2013
—will need to be returned to Sherry Nassar (Duncan Hall 3137) by 4pm

on Friday, February 22, 2013
—Closed-book, closed computer written exam that can be taken in any

2-hour duration during that period

COMP 322, Spring 2013 (V.Sarkar)

Scope of Midterm Exam
• Midterm exam will cover material from Lectures 1 - 15

—Lecture 16 on Phaser Accumulators and Bounded Phasers is excluded

• Excerpts from midterm exam instructions
—“Since this is a written exam and not a programming assignment,

syntactic errors in program text will not be penalized (e.g., missing
semicolons, incorrect spelling of keywords, etc) so long as the
meaning of your solution is unambiguous.”

—“If you believe there is any ambiguity or inconsistency in a question,
you should state the ambiguity or inconsistency that you see, as well
as any assumptions that you make to resolve it.”

3

COMP 322, Spring 2013 (V.Sarkar)4

Async and Finish Statements for Task
Creation and Termination (Lecture 1)

async S

• Creates a new child task that
executes statement S

finish S
§ Execute S, but wait until all

asyncs in S’s scope have
terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

COMP 322, Spring 2013 (V.Sarkar)

Worksheet #1 solution:
Insert finish to get correct Two-way Parallel Array Sum program

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. finish {

4. async { // Task T1 computes sum of upper half of array

5. for(int i=X.length/2; i < X.length; i++)

6. sum2 += X[i];

7. }

8. // T0 computes sum of lower half of array

9. for(int i=0; i < X.length/2; i++) sum1 += X[i];

10. }

11. // Task T0 waits for Task T1 (join)

12. return sum1 + sum2;

5

COMP 322, Spring 2013 (V.Sarkar)

Solution to Homework 1, Question 1.1
• ... insert finish statements in the incorrect parallel version so as to

make it correct i.e., to ensure that the parallel version computes
the same result as the sequential version, while maximizing the
potential parallelism.

• One possible solution:
0. finish
1. for (int I = 0 ; I < N ; I++)
2. for (int J = 0 ; J < N ; J++)
3. async C[I][J] = 0;
4.
5. finish
6. for (int I = 0 ; I < N ; I++)
7. for (int J = 0 ; J < N ; J++)
8. async
9. for (int K = 0 ; K < N ; K++)
10. C[I][J] += A[I][K] * B[K][J];
11.
12.System.out.println(C[0][0]);

6

COMP 322, Spring 2013 (V.Sarkar)7

Computation Graphs for HJ Programs
(Lecture 2)

• A Computation Graph (CG) captures the dynamic execution
of an HJ program, for a specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any async,

begin-finish and end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
— “Spawn” edges connect parent tasks to child async tasks
— “Join” edges connect the end of each async task to its IEF’s

end-finish operations

• All computation graphs must be acyclic
—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic
graphs” (dags)

COMP 322, Spring 2013 (V.Sarkar)8

Complexity Measures for Computation Graphs
Define
• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path

length)
—CPL(G) is also the smallest possible execution time

for the computation graph

COMP 322, Spring 2013 (V.Sarkar)9

Ideal Parallelism

Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

Ideal Parallelism is independent
of the number of processors that
the program executes on, and
only depends on the computation
graph

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1

COMP 322, Spring 2013 (V.Sarkar)10

Solution to Worksheet #2: what is the critical path length
and ideal parallelism of this graph?

• time(N) is labeled for all nodes N in the graph
1

1

1

4
WORK(G) = 26

CPL(G) = 11

Ideal Parallelism
= WORK(G)/CPL(G)
= 26 / 11 ~ 2.36

41

1 1 1

31

1

1

1

1

1

1

1

CPL(G) = length of a longest path in computation graph G

COMP 322, Spring 2013 (V.Sarkar)

Solution to Homework 1, Question 1.2.1
• Calculate the total WORK and

CPL (critical path length) for this
task graph. Each node is labeled
with the steps name and execution
time e.g., B(2) refers to step B with
an execution time of 2 units.

• WORK = 12

• CPL = 8

11

COMP 322, Spring 2013 (V.Sarkar)

Solution to Homework 1, Question 1.2.2
• Write a Habanero-Java program with basic finish and async

constructs (no futures) that can generate this computation graph.

• One possible solution:
1. finish {

2. A;

3. async D;

4. B;

5. async {

6. E;

7. finish { async H; F; }

8. G;

9. }

10. }

11. C;

12

COMP 322, Spring 2013 (V.Sarkar)13

Bounding the performance of Greedy Schedulers
(Lecture 3)

Combine lower and upper bounds to get

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution
time TP that is within a factor of 2 of the optimal time
(since max(a,b) and (a+b) are within a factor of 2 of each
other, for any a ≥ 0,b ≥ 0).

Corollary 2: Lower and upper bounds approach the same
value whenever

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism, WORK(G)/CPL(G) << P

COMP 322, Spring 2013 (V.Sarkar)

Strong Scaling and Speedup

• Define Speedup(P) = T1 / TP

—Factor by which the use of P processors speeds
up execution time relative to 1 processor, for a
fixed input size

—For ideal executions without overhead,
1 <= Speedup(P) <= P

—Linear speedup
– When Speedup(P) = k*P, for some constant k,

0 < k < 1

• Referred to as “strong scaling” because input size is
fixed

14

COMP 322, Spring 2013 (V.Sarkar)15

Reduction Tree Schema for computing
Array Sum in parallel

Assume input array size = S, and each add takes 1 unit of time:

• WORK(G) = S-1
• CPL(G) = log2(S)

• Assume TP = WORK(G)/P + CPL(G) = (S-1)/P + log2(S)

• Within a factor of 2 of any schedule’s execution time

COMP 322, Spring 2013 (V.Sarkar)16

Implementation of Reduction Tree Schema in HJ
(ArraySum1)

1.for (int stride = 1; stride < X.length ; stride *= 2) {

2. // Compute size = number of adds to be performed in stride

3. int size=ceilDiv(X.length,2*stride);

4. finish for(int i = 0; i < size; i++)

5. async {

6. if ((2*i+1)*stride < X.length)

7. X[2*i*stride] += X[(2*i+1)*stride];

8. } // finish-for-async

9.} // for

10.

11.// Divide x by y, and round up to next largest int

12.static int ceilDiv(int x, int y) { return (x+y-1) / y; }

COMP 322, Spring 2013 (V.Sarkar)17

Solution to Worksheet #3: Strong Scaling for Array Sum

• Assume T(S,P) ~ WORK(G,S)/P + CPL(G,S) = (S-1)/P + log2(S) for a
parallel array sum computation with input size S on P processors

• Strong scaling
—Assume S = 1024 ==> log2(S) = 10
—Compute Speedup(P) for S=1024 on 10, 100, 1000 processors

– T(P) = 1023/P + 10
– Speedup(10) = T(1)/T(10) ~ 9.2
– Speedup(100) = T(1)/T(100) ~ 51.1
– Speedup(1000) = T(1)/T(1000) ~ 102.3

– Ideal parallelism = T(1)/T(∞) = 1033/10 = 103.3

—Why is it worse than linear?
– The critical path limits speedup as P increases (speedup is limited

by ideal parallelism)

COMP 322, Spring 2013 (V.Sarkar)

Week 1 Lecture Quiz Solution

18

COMP 322, Spring 2013 (V.Sarkar)

How many processors should we use?
(Lecture 4)

• Efficiency(P) = Speedup(P)/ P = T1/(P * TP)
—Processor efficiency --- figure of merit that indicates how well a

parallel program uses available processors
—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

• Half-performance metric
—S1/2 = input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to

obtain efficient parallelism
—A larger value of S1/2 indicates that the problem is harder to parallelize

efficiently

• How many processors to use?
—Common goal: choose number of processors, P for a given input size,

S, so that efficiency is at least 0.5

19

COMP 322, Spring 2013 (V.Sarkar)20

ArraySum: Speedup as function of array
size, S, and number of processors, P

• Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))

• Asymptotically, Speedup(S,P) --> S/log2S, as P --> infinity

P

Speedup(S,P)

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Speedup"(N=1024)" Speedup"(N=2048)"

COMP 322, Spring 2013 (V.Sarkar)21

Solution to Worksheet #4: how many processors
should we use for ArraySum?

For ArraySum on P processors and input array size, S,
Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))
• Question: For a given N, what value of P should we choose

to obtain Efficiency(P) = 0.5? Recall that Efficiency(P) = 0.5
⇒ Speedup(N,P)/P = 0.5.

• Answer (derive value of P as a symbolic function of N):
. . . ⇒ P = N/log2(N)

• Check answer by observing that N/P = log2(N) ⇒

Speedup(N,P) = N/(log2(N) + log2(N)) = N/(2*log2(N)) = P/2

COMP 322, Spring 2013 (V.Sarkar)22

Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be

executed sequentially for a given input size S, then the best speedup
that can be obtained for that program is Speedup(S,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on
parallel execution time
— CPL >= q * T(S,1)
— T(S,P) >= q * T(S,1)
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in
program can be divided into sequential and parallel portions
—Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)
—Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into
account

COMP 322, Spring 2013 (V.Sarkar)

Homework 2, Question 1.1
• In Lecture 4, you learned the following statement of Amdahl’s Law:

—If q ≤ 1 is the fraction of WORK in a parallel program that must be
executed sequentially, then the best speedup that can be obtained for
that program, even with an unbounded number of processors, is
Speedup ≤ 1/q.

• Now, consider the following generalization of Amdahl’s Law. Let q1
be the fraction of WORK in a parallel program that must be
executed sequentially, and q2 be the fraction of WORK that can
use at most 2 processors. Assume that the fractions of WORK
represented by q1 and q2 are disjoint. Your assignment is to
provide an upper bound on the Speedup as a function of q1 and
q2, and justify why it is a correct upper bound. (Hint: to check your
answer, consider the cases when q1=0 or q2=0.)

23

COMP 322, Spring 2013 (V.Sarkar)

Solution to Homework 2, Question 1.1
• Total WORK can be divided into three categories
— q1*WORK = work that must be executed sequentially
— q2*WORK = work can can use at most 2 processors
— (1-q1-q2)*WORK = work that can use an unbounded number of processors

• Lower bound on execution time on P processors
— T(p) >= q1*WORK + q2*WORK/2 + (1-q1-q2)*WORK/P

• Upper bound on Speedup
— Speedup(P) = T(1) / T(P)
— <= WORK / (q1*WORK + q2*WORK/2 + (1-q1-q2)*WORK/P)
⇒ SpeedUp(P) <= 1/ (q1 + q2/2 + (1-q1 - q2) / P) <= 1/(q1 + q2/2)

24

COMP 322, Spring 2013 (V.Sarkar)

Weak Scaling
• Consider a computation graph, CG, in which all node execution

times are parameterized by input size S
—TIME(N,S) = time to execute node N with input size S
—WORK(G,S) = sum of TIME(N,S) for all nodes N
—CPL(G,S) = critical path length for G, assuming node N takes

TIME(N,S)

• Let T(S,P) = time to execute CG with input size S on P processors

• Weak scaling
—Allow input size S to increase with number of processors i.e., make S a

function of P
—Define Weak-Speedup(S(P),P) = T(S(P),1)/T(S(P),P), where input size

S(P) increases with P
– Note that T(S(P),1) is a hypothetical projection of running a larger

problem size, S(P), on 1 processor

25

COMP 322, Spring 2013 (V.Sarkar)26

Weak Scaling for Array Sum
• Recall that T(S,P) = (S-1)/P + log2(S) for a parallel array sum computation

• For weak scaling, assume S(P) = 1024*P

==> Weak-Speedup(S(P),P) = T(S(P),1)/T(S(P),P)

 = ((1024*P-1)+log2(1024*P)) / ((1024*P-1)/P+log2(1024*P)) ~ P

1.E+00&

1.E+01&

1.E+02&

1.E+03&

1.E+04&

1.E+05&

1.E+06&

1.E+00& 1.E+01& 1.E+02& 1.E+03& 1.E+04& 1.E+05& 1.E+06&

Weak%Speedup*as*a*func/on*of*P*

COMP 322, Spring 2013 (V.Sarkar)27

Formal Definition of Data Races
(Lecture 5)

 Formally, a data race occurs on location L in a program
execution with computation graph CG if there exist steps
(nodes) S1 and S2 in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1

i.e., there is no path of dependence edges from S1 to S2 or
from S2 to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the
accesses is a write. (L must be a shared location i.e., a
static field, instance field, or array element.)

 Data races are challenging because of
• Nondeterminism: different executions of the parallel

program with the same input may result in different outputs.
• Debugging and Testing: it is usually impossible to guarantee

that all possible orderings of the accesses to a location will
be encountered during program debugging and testing.

COMP 322, Spring 2013 (V.Sarkar)

Relating Data Races and Determinism
• A parallel program is said to be deterministic with respect to

its inputs if it always computes the same answer when given
the same inputs.

• Structural Determinism Property
—If a parallel program is written using the constructs in Module 1 and is

guaranteed to be race-free, then it must be deterministic with respect
to its inputs. The final computation graph is also guaranteed to be the
same for all executions of the program with the same inputs.

• Constructs introduced in Module 1 (“Deterministic Shared-
Memory Parallelism”) include async, finish, finish
accumulators, futures, data-driven tasks (async await),
forall, barriers, phasers, and phaser accumulators.
—The notable exceptions are critical sections, isolated statements, and

actors, all of which will be covered in Module 2 (“Nondeterministic
Shared-Memory Parallelism”)

28

COMP 322, Spring 2013 (V.Sarkar)29

Solution to Worksheet #5: Data Races and Determinism
Consider a modified String Search program that returns true if any occurrence is

found, rather than the count of all occurrences:
1. static boolean found = false; // static field

2. . . .

3. finish for (int i = 0; i <= N - M; i++)

4. async {

5. int j;

6. for (j = 0; j < M; j++)

7. if (text[i+j] != pattern[j]) break;

8. if (j == M) found = true; // found at offset i

9. } // finish-for-async
Questions:
1. Does this program have a data race?
 Yes. Multiple async tasks can write to the same static field, found.
2. Is it deterministic?
 Yes. The answer will be the same regardless of the order of the writes.
3. Is it structurally deterministic?
 Yes. The computation graph will always be the same for the same input.

COMP 322, Spring 2013 (V.Sarkar)30

HJ Futures: Tasks with Return Values
(Lecture 6)

async<T> { Stmt-Block }

• Creates a new child task that
executes Stmt-Block, which
must terminate with a return
statement returning a value of
type T

• Async expression returns a
reference to a container of
type future<T>

• Values of type future<T> can
only be assigned to final
variables

Expr.get()
• Evaluates Expr, and blocks if

Expr’s value is unavailable
• Expr must be of type

future<T>
• Return value from Expr.get()

will then be T
• Unlike finish which waits for

all tasks in the finish scope, a
get() operation only waits for
the specified async
expression

COMP 322, Spring 2013 (V.Sarkar)31

Computation Graph for Two-way Parallel
Array Sum using Future Tasks

NOTE: DrHJ’s data race detection tool does not support futures as yet
(it only supports finish, async, and isolated constructs)

COMP 322, Spring 2013 (V.Sarkar)32

Worksheet #6 solution: Computation Graphs
for Async-Finish and Future Constructs

A

B C

D E

F

1) Can you write an HJ
program with async-finish
constructs that generates a
Computation Graph with the
same ordering constraints as
the graph on the right?
No

2) Can you write an HJ
program with future async-
get constructs that generates
a Computation Graph with
the same ordering
constraints as the graph on
the right? If so, provide a
sketch of the program.
Yes, see program sketch with
void futures. A dummy
return value can also be
used.

1. // Return statement is optional for void futures

2. final future<void> a = async<void> { A;};

3. final future<void> b = async<void> { a.get(); B;};

4. final future<void> c = async<void> { a.get(); C;};

5. final future<void> d = async<void> { b.get();

6. c.get(); D;};

7. final future<void> e = async<void> { c.get(); E;};

8. final future<void> f = async<void> { d.get();

9. e.get(); F;};

10. f.get(); // Or wrap lines 1-9 in finish

COMP 322, Spring 2013 (V.Sarkar)

Week 2 Lecture Quiz Solution: Question 1

33

COMP 322, Spring 2013 (V.Sarkar)

Week 2 Lecture Quiz Solution: Question 2

34

COMP 322, Spring 2013 (V.Sarkar)

Week 2 Lecture Quiz Solution: Question 3

35

COMP 322, Spring 2013 (V.Sarkar)

Week 2 Lecture Quiz Solution: Question 3
(contd)

36

COMP 322, Spring 2013 (V.Sarkar)

Week 2 Lecture Quiz Solution: Question 4

37

COMP 322, Spring 2013 (V.Sarkar)38

Worksheet #7 solution: Why must
Future References be declared as final?

1. static future<int> f1=null;

2. static future<int> f2=null;

3.

4. void main(String[] args) {

5. f1 = async<int> {return a1();};

6. f2 = async<int> {return a2();};

7. }

8.

9. int a1() { // Task T1

10. while (f2 == null); // spin loop

11. return f2.get(); //T1 waits for T2

12. }

13.

14. int a2() { // Task T2

15. while (f1 == null); // spin loop

16. return f1.get(); //T2 waits for T1

17. }

1) Consider the code on the right with
futures declared as non-final static
fields (though that’s not permitted in
HJ). Can a deadlock situation occur
between tasks T1 and T2 with this
code? Explain why or why not.

Yes, a deadlock can occur when future
f1 does f2.get() and future f2 does
f1.get().

WARNING: such “spin” loops are an
example of bad parallel programming
practice in application code (they
should only be used by expert systems
programmers, and even then sparingly)
Their semantics depends on the
memory model. In HJ’s memory model,
there’s no guarantee that the above
spin loops will ever terminate.

deadlock

COMP 322, Spring 2013 (V.Sarkar)39

Worksheet #7 solution: Why must
Future References be declared as final

1. void main(String[] args) {

2. final future<int> f1 =

3. async<int> {return a1();};

4. final future<int> f2 =

5. async<int> {return a2(f1);};

6. }

7.

8. int a1() {

9. // Task T1 cannot receive a

10. // reference to f2

11.

12. }

13.

14. int a2(future<int> f1) {

15. // Task T2 can receive a reference

16. // to f1 but that won’t cause

17. // a deadlock.

18. ... f1.get() ...

19. }

2) Now consider a modified version of
the above code in which futures are
declared as final local variables (which
is permitted in HJ). Can you add get()
operations to methods a1() and a2() to
create a deadlock between tasks T1 and
T2 with this code? Explain why or why
not.

No, the final declarations make it
impossible for future f1’s task (T1) to
receive a reference to f2.

Will your answer be different if f1 and f2
are final fields in objects or final static
fields?

No.

COMP 322, Spring 2013 (V.Sarkar)

Finish Accumulators (Lecture 7)
• Creation

 accumulator ac = accumulator.factory.accumulator(operator, type);
– operator can be Operator.SUM, Operator.PROD, Operator.MIN, Operator.MAX or

Operator.CUSTOM
★ You may need to use the fully qualified name, accumulator.Operator.SUM, in your

code if you don’t have the appropriate import statement
– type can be int.class or double.class for standard operators or any object that

implements a “reducible” interface for CUSTOM

• Registration
 finish (ac1, ac2, ...) { ... }

– Accumulators ac1, ac2, ... are registered with the finish scope

• Accumulation

 ac.put(data);
– can be performed by any statement in finish scope that registers ac

• Retrieval

 Number n = ac.get();
– get() is nonblocking because finish provides the necessary synchronization

Either returns initial value before end-finish or final value after end-finish
– result from get() will be deterministic if CUSTOM operator is associative and

commutative

40

COMP 322, Spring 2013 (V.Sarkar)

Sequential solution for NQueens
(Lecture 8)

1. static int count;

2. . . .

3. count = 0;

4. nqueens_kernel(new int[0], 0);

5. System.out.println(“No. of solutions = “ + count);

6. . . .

7. void nqueens_kernel(int [] a, int depth) {

8. if (size == depth) count++;

9. else

10. /* try each possible position for queen at depth */

11. for (int i = 0; i < size; i++) {

12. /* allocate a temporary array and copy array a into it */

13. int [] b = new int [depth+1];

14. System.arraycopy(a, 0, b, 0, depth);

15. b[depth] = i;

16. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17. } // for-async

18. } // nqueens_kernel()

41

COMP 322, Spring 2013 (V.Sarkar)

Parallel Solution to NQueens with Finish
Accumulators (counting all solutions)

1. static accumulator count;

2. . . .

3. count = accumulator.factory.accumulator(SUM, int.class);

4. finish(count) nqueens_kernel(new int[0], 0);

5. System.out.println(“No. of solutions = “ + count.get().intValue());

6. . . .

7. void nqueens_kernel(int [] a, int depth) {

8. if (size == depth) count.put(1);

9. else

10. /* try each possible position for queen at depth */

11. for (int i = 0; i < size; i++) async {

12. /* allocate a temporary array and copy array a into it */

13. int [] b = new int [depth+1];

14. System.arraycopy(a, 0, b, 0, depth);

15. b[depth] = i;

16. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17. } // for-async

18. } // nqueens_kernel()

42

