
COMP 322: Fundamentals of 
Parallel Programming

Lecture 17: Midterm Review (Part 2)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322                             Lecture 18            20 February 2013



COMP 322, Spring 2013 (V.Sarkar)

Scope of Midterm Exam
• Midterm exam will cover material from Lectures 1 - 15

—Lecture 16 on Phaser Accumulators and Bounded Phasers is excluded

• Excerpts from midterm exam instructions
—“Since this is a written exam and not a programming assignment, 

syntactic errors in program text will not be penalized (e.g., missing 
semicolons, incorrect spelling of keywords, etc) so long as the 
meaning of your solution is unambiguous.”

—“If you believe there is any ambiguity or inconsistency in a question, 
you should state the ambiguity or inconsistency that you see, as well 
as any assumptions that you make to resolve it.”

2



COMP 322, Spring 2013 (V.Sarkar)

Week 3 Lecture Quiz Solution: Question 1

3



COMP 322, Spring 2013 (V.Sarkar)

Week 3 Lecture Quiz Solution: Question 1 
(contd)

4



COMP 322, Spring 2013 (V.Sarkar)

Week 3 Lecture Quiz Solution: Question 2

5



COMP 322, Spring 2013 (V.Sarkar)

Week 3 Lecture Quiz Solution: 
Questions 3 & 4

6

Answer = 0

Answer = number of 
occurrences of pattern



COMP 322, Spring 2013 (V.Sarkar)7

Prefix Sum Problem Statement
(Lecture 8)

Given input array A, compute output array X as follows

• The above is an inclusive prefix sum since X[i] includes A[i]

• For an exclusive prefix sum, perform the summation for 0 <=j <i

• Addition can be replaced by any associative operator, f

• It is easy to see that prefix sums can be computed sequentially in 
O(n) time

// Copy input array A into output array X

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);

// Update array X with prefix sums (f can be +, for example)

for (int i=1 ; i < X.length ; i++ ) X[i] = f(X[i-1],X[i]);



COMP 322, Spring 2013 (V.Sarkar)8

Summary of Parallel Prefix Sum 
Algorithm

• Critical path length, CPL = O(log n)

• Total number of add operations, WORK = O(n)

• Optimal algorithm for P = O(n/log n) processors
—Adding more processors does not help

• Parallel Prefix Sum has several applications that go beyond 
computing the sum of array elements

• Parallel Prefix Sum can be used for any operation that is 
associative (need not be commutative)
—In contrast, finish accumulators require the operator to be both 

associative and commutative

How do associativity and commutativity make a difference?

Time for worksheet #8!



COMP 322, Spring 2013 (V.Sarkar)9

Worksheet #8 solution: 
Associativity and Commutativity

A Finish Accumulator (FA) can be used for any associative and commutative 
binary function. 
Parallel Prefix (PP) algorithm can be used for any associative binary function 
(the same applies for parallel reductions in ArraySum1 and ArraySum2).

A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)).
A binary function f is commutative if f(x,y) = f(y,x).

For each of the following functions, indicate if it can be used in a finish 
accumulator or a parallel prefix sum algorithm or both or neither.

1) f(x,y) = x+y, for integers x, y, is associative and commutative
⇒ both FA and PP can be used

2) g(x,y) = (x+y)/2, for integers x, y, is commutative but not associative
⇒ neither FA nor PP can be used

3) h(s1,s2) = concat(s1, s2) for strings s1, s2 e.g., h(“ab”,”cd”) = “abcd” is 
associative but not commutative
⇒ PP can be used, but not FA



COMP 322, Spring 2013 (V.Sarkar)

Week 4 Lecture Quiz Solution: 
Question 1

10

} CPL=1

} CPL =
10+10
= 20

Total CPL = 21, but quiz answer said 11
Quiz grading will be updated to give zero weightage to this question!



COMP 322, Spring 2013 (V.Sarkar)

Week 4 Lecture Quiz Solution: 
Question 2

11

Confusion about first part: if pivot came from in[] array then the answer 
should be false.  This part will also receive zero weightage.



COMP 322, Spring 2013 (V.Sarkar)

Abstract vs. Real Performance --- 
Work-Sharing vs. Work-Stealing Scheduling (Lecture 9)

• Work-Sharing
—Busy worker eagerly distributes new work
—Easy implementation with global task pool
—Access to the global pool needs to be 

synchronized: scalability bottleneck

• Work-Stealing
—Busy worker incurs little overhead to create 

work
—Idle worker “steals” the tasks from busy 

workers
—Distributed task pools lead to improved 

scalability
—When task Τa spawns Τb, the worker can

–stay on Τa, making Τb available for execution 
by another processor (help-first policy), or

–start working on Τb  first (work-first policy)

w1 w2 w3 w4

push
task

pull
task

work-sharing

w1 w2 w3

work-stealing runtime

steal task

12
6



COMP 322, Spring 2013 (V.Sarkar)

Work-first vs. Help-first work-stealing 
policies on 2 processors (contd)

13

1. finish { 

2.  // Start of Task T0 (main program)

3.  sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

4.  async { // Task T1 computes sum of upper half of array

5.    for(int i=X.length/2; i < X.length; i++) 

6.      sum2 += X[i];

7.  }

8.  // T0 computes sum of lower half of array

9.  for(int i=0; i < X.length/2; i++) sum1 += X[i];

10. } 

11. // Task T0 waits for Task T1 (join)

12. return sum1 + sum2;

13.} // finish

Continuations

Help-First worker does not switch tasks
Work-first worker will switch tasks

Help-First worker can switch tasks
Work-first worker can switch tasks

Let’s try 
more of 
this in 
Worksheet 
#9 !



COMP 322, Spring 2013 (V.Sarkar)

Worksheet #9 solution: Continuations and 
Work-First vs. Help-First Work-Stealing Policies

For each of the continuations below, label it as “WF” if a work-first worker 
can switch tasks at that point and as “HF” if a help-first worker can switch 
tasks at that point.  Some continuations may have both labels.

1.finish { // F1

2.  async A1;

3.  finish { // F2

4.    async A3;

5.    async A4;

6.  }

7.  S5;

8.}

Continuations

WF

WF
WF
WF, HF

WF, HF

14



COMP 322, Spring 2013 (V.Sarkar)

Scheduling Policies Currently Available in HJ
(Lecture 10)

DrHJ compiler 
option

Command-line 
option

Functional 
characteristics

Performance 
characteristics

work-sharing
(Default option)

Compile: hjc -rt s (default)
Runtime: hj
            (no option needed)

1) Supports full lang
2) Supports perf 
metrics

3) Creates additional 
worker threads when a 
task blocks

work-sharing 
(Fork-Join variant)

Compile: hjc -rt s (default)
Runtime: hj -fj

1) + 2) 3) + 4) may perform 
better than work-sharing 
for recursive parallelism

work-stealing
(Help-First policy)

Compile: hjc -rt h
Runtime: hj
            (no option needed)

5) Only supports 
async, finish, 
forasync, isolated, 
atomic vars

6) Fixed number of 
worker threads
7) better for loop 
parallelism

work-stealing
(Work-First policy)

Compile: hjc -rt w
Runtime: hj
            (no option needed)

5) + 8) Supports data 
race detection

6) + 9) better for 
recursive parallelism

work-stealing
(Adaptive policy)

Compile: hjc -rt h
Runtime: hj
            (no option needed)

Same as 5) 10) automatically chooses 
between help-first and 
work-first policies on each 
async

cooperative
(under development)

Compile: hjc -rt c
Runtime: hj
            (no option needed)

Currently supports 5) + 
Futures --- goal is to 
support everything!

Same as 6)

15



COMP 322, Spring 2013 (V.Sarkar)

Worksheet #10 solution: Scheduling Program Q2 using 
Work-First & Help-First Schedulers

1

1

10

A

B C

F

1

1 110 1D E

1. // Program Q2

2. A;

3. finish {

4.   async { C; E; }

5.   async F;

6.   async { B; D; }

7. }

Start 
time

Proc 1 Proc 2

0 A
1 C F
2 E F
3 B F
4 D F
5 D F
6 D F
7 D F
8 D F
9 D F

10 D F
11 D
12 D
13 D

Work-First Schedule

Complete work-first and help-first 
schedules for the program shown below 
(using step times from the computation 
graph)

16



COMP 322, Spring 2013 (V.Sarkar)

Worksheet #10 solution: Scheduling Program Q2 using 
Work-First & Help-First Schedulers (contd)

1

1

10

A

B C

F

1

1 110 1D E

1. // Program Q2

2. A;

3. finish {

4.   async { C; E; }

5.   async F;

6.   async { B; D; }

7. }

Start 
time

Proc 1 Proc 2

0 A
1 B C
2 D E
3 D F
4 D F
5 D F
6 D F
7 D F
8 D F
9 D F

10 D F
11 D F
12 F
13

Help-First Schedule

17



COMP 322, Spring 2013 (V.Sarkar)

seq clause in HJ async statement

1. // Non-Future example

2. async seq(size < thresholdSize) computeSum(X, lo, mid);

3. 

4. // Future example

5. final future<int> sum1 = async<int> seq(size < thresholdSize)

6.                             { return computeSum(X, lo, mid); };

• “seq” clause specifies condition under which async should be executed 
sequentially

• False ⇒ an async is created

• True ⇒ the parent executes async body sequentially

• Avoids the need to duplicate code for both cases
• Also simplifies use of final variables (needed for futures)

18



COMP 322, Spring 2013 (V.Sarkar)

Parallel Solution to NQueens with Finish 
Accumulator and seq clause

1.  static accumulator count;

2.  . . .

3.  count = accumulator.factory.accumulator(SUM, int.class);

4.  finish(count) nqueens_kernel(new int[0], 0);

5.  System.out.println(“No. of solutions = “ + count.get().intValue());

6.  . . .

7.  void nqueens_kernel(int [] a, int depth) {

8.    if (size == depth) count.put(1);

9.    else

10.     /* try each possible position for queen at depth */

11.     for (int i =  0; i < size; i++) async seq(depth >= cutoff) {

12.       /* allocate a temporary array and copy array a into it */

13.       int [] b = new int [depth+1];

14.       System.arraycopy(a, 0, b, 0, depth);

15.       b[depth] = i;

16.       if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17.     } // for-async

18. } // nqueens_kernel()

19



COMP 322, Spring 2013 (V.Sarkar)

Week 4 Lecture Quiz Solution: 
Questions 3 and 4

20

For input size = 
128,

WORK = 127

and

CPL = 63+1 = 64
(because of seq 
clause)



COMP 322, Spring 2013 (V.Sarkar)

Summary of HJ’s forasync statement
(Lecture 11)

forasync (point [i1] : [lo1:hi1]) <body> 

forasync (point [i1,i2] : [lo1:hi1,lo2:hi2]) <body> 

forasync (point [i1,i2,i3] : [lo1:hi1,lo2:hi2,lo3:hi3]) <body> 

. . .

• forasync statement creates multiple async child tasks, one per 
iteration of the forasync
—all child tasks can execute <body> in parallel
—child tasks are distinguished by index “points” ([i1], [i1,i2], …)

• <body> can read local variables from parent (copy-in semantics like 
async)

• forasync needs a finish for termination, just like regular async tasks
—Later, we will learn about replacing “finish forasync” by “forall”

• In addition to its convenient syntax, parallel loop constructs are easier 
to manage with “chunking”, compared to for-for-async structures

21



COMP 322, Spring 2013 (V.Sarkar)

Chunking a 1-dimensional forasync loop
(General approach)

• Assume that the forasync loop originally iterates over region r
  forasync(point[i] : r) 
   BODY(i); // No. of tasks = r.size()

• Assume that we have a parameter, nc, for the desired number of 
chunks (tasks)
—A good choice is nc = Runtime.getNumOfWorkers(), as in Listing 31

• Assume that we have a helper method, getChunk(r, nc, ii) that 
returns the iteration range for chunk # ii as an HJ region
—e.g., getChunk([0:99], 4, 0) = [0:24] and getChunk([0:99], 4, 3) = [75:99]
—No requirement for nc to evenly divide r.size()

•   The original forasync above can then be rewritten as
    forasync(point[ii] : [0:nc-1])
    for(point[i] : getChunk(r,nc,ii)) 

    BODY(i); // No. of tasks = nc

22



COMP 322, Spring 2013 (V.Sarkar)

Solution to Worksheet #11: One-dimensional 
Iterative Averaging Example

1) Assuming n=9 and the input array below, perform one iteration of the 
iterative averaging example by only filling in the blanks for odd values 
of j in the myNew[] array.  Recall that the computation is “myNew[j] = 
(myVal[j-1] + myVal[j+1])/2.0;”

2) Will the contents of myVal[] and myNew[] change in further 
iterations, after myNew above in 1) becomes myVal[] in the next 
iteration?

No, this represents the converged value (equilibrium/fixpoint).

23

index, j 0 1 2 3 4 5 6 7 8 9 10

myVal 0 0 0.2 0 0.4 0 0.6 0 0.8 0 1

myNew 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



COMP 322, Spring 2013 (V.Sarkar)

Week 5 & 6 Lecture Quiz Solution: 
Question 1

24



COMP 322, Spring 2013 (V.Sarkar)

Example: HJ code for One-Dimensional Iterative 
Averaging with chunked for-finish-forasync-for structure 

1. int nc = Runtime.getNumOfWorkers();

2. for (point [iter] : [0:m-1]) {

3.   // Compute MyNew as function of input array MyVal

4.   finish forasync (point [jj] : [0:nc-1]) {

5.     for(point [j] : getChunk([1:n],nc,jj))

6.       myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

7.   } // finish forasync

8.   temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew; 

9.   // myNew becomes input array for next iteration

10.} // for

25



COMP 322, Spring 2013 (V.Sarkar)

Week 5 & 6 Lecture Quiz Solution: 
Question 2

26



COMP 322, Spring 2013 (V.Sarkar)27

HJ’s forall statement = finish + forasync 
+ barriers (Lecture 12)

Goal 1 (minor): replace common finish-forasync idiom by forall 
e.g., replace
finish forasync (point [I,J] : [0:N-1,0:N-1])
  for (point[K] : [0:N-1])
    C[I][J] += A[I][K] * B[K][J];

by
forall (point [I,J] : [0:N-1,0:N-1])
  for (point[K] : [0:N-1])
    C[I][J] += A[I][K] * B[K][J];

Goal 2 (major): Also support “barrier” synchronization

•  Caveat: forall is only supported on the work-sharing runtime 
because of barrier synchronization



COMP 322, Spring 2013 (V.Sarkar)

Hello-Goodbye Forall Example (contd)
• Question: how can we transform this code so as to ensure that all 

tasks say hello before any tasks say goodbye?
• Approach 2: insert a “barrier” between the hello’s and goodbye’s

—“next” statement in HJ’s forall loops
1. // APPROACH 2

2. forall (point[i] : [0:m-1]) {

3.  int sq = i*i;

4.  System.out.println(“Hello from task with square = “ + sq);

5.  next; // Barrier

6.  System.out.println(“Goodbye from task with square = “ + sq);

7. }

• next è each forall iteration suspends at next until all iterations arrive 
(complete previous phase), after which the phase can be advanced

—If a forall iteration terminates before executing “next”, then the other iterations do 
not wait for it

—Scope of next is the closest enclosing forall statement
—Special case of “phaser” construct (will be covered later in class)

28

Phase 0

Phase 1



COMP 322, Spring 2013 (V.Sarkar)

Worksheet #12: Forall Loops and Barriers
1) Draw a “barrier matching” figure similar to slide 14 for the code fragment below.

1. String[] a = { “ab”, “cde”, “f” };

2. . . . int m = a.length; . . . 

3. forall (point[i] : [1:m]) {

4.    for (int j = 0; j < a[i-1].length(); j++) {

5.      // forall iteration i is executing phase j

6.      System.out.println("(" + i + "," + j + ")");

7.      next;   

8.    }

9.  }

Solution

29



COMP 322, Spring 2013 (V.Sarkar)

Single Program Multiple Data (SPMD) 
Parallel Programming Model (Lecture 13)

Basic idea

• Run the same code (program) on P workers

• Use the “rank” --- an ID ranging from 0 to (P-1) --- to determine what 
data is processed by which worker
—Hence, “single-program” and “multiple-data”
—Rank is equivalent to index in a top-level “forall (point[i] : [0:P-1])” loop

• Lower-level programming model than dynamic async/finish parallelism
—Programmer’s code is essentially at the worker level (each forall iteration is 

like a worker), and work distribution is managed by programmer by using 
barriers and other synchronization constructs

—Harder to program but can be more efficient for restricted classes of 
applications (e.g. for OneDimAveraging, but not for nqueens)

• Convenient for hardware platforms that are not amenable to efficient 
dynamic task parallelism

—General-Purpose Graphics Processing Unit (GPGPU) accelerators
—Distributed-memory parallel machines

30



1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2]; gVal[n+1] = 1;

2. int nc = Runtime.getNumWorkers();

3. forall (point [jj]:[0:nc-1]) { // Chunked forall is now the outermost loop

4.   double[] myVal = gVal; double[] myNew = gNew; // Copy of myVal/myNew pointers

5.   for (point [iter] : [0:m-1]) {

6.     // Compute MyNew as function of input array MyVal

7.     for (point [j]:getChunk([1:n],nc,jj)) // Iterate within chunk

8.        myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

9.     next; // Barrier before executing next iteration of iter loop

10.    // Swap local pointers, myVal and myNew

11.    double[] temp=myVal; myVal=myNew; myNew=temp;

12.    // myNew becomes input array for next iter

13.  } // for

14.} // forall

COMP 322, Spring 2013 (V.Sarkar)

One-Dimensional Iterative Averaging: Barrier version with 
chunked forall-for-for+next structure is an SPMD program 

8

Instead of async-finish, this SPMD version of OneDimAveraging creates one 
task per worker, uses getChunk() to distribute work, and use barriers to 
synchronize workers.



COMP 322, Spring 2013 (V.Sarkar)

Week 5 & 6 Lecture Quiz Solution: 
Question 3 re. previous barrier version

32



COMP 322, Spring 2013 (V.Sarkar)

Use of next-with-single to print a log message 
between Hello and Goodbye phases 

1.// Listing 37 in Module 1 handout

2. forall (point[i] : [0:m-1]) {

3.  int sq = i*i;

4.  System.out.println(“Hello from task with square = “ + sq);

5.  next { // next-with-single statement

6.    System.out.println(“LOG: Between Hello & Goodbye phases”);

7.  }

8.  System.out.println(“Goodbye from task with square = “ + sq);

9. }

33



COMP 322, Spring 2013 (V.Sarkar)

Week 5 & 6 Lecture Quiz Solution: 
Question 4

34



COMP 322, Spring 2013 (V.Sarkar)

Extending HJ Futures for Macro-Dataflow:
Data-Driven Futures (DDFs) and Data-Driven Tasks (DDTs)
ddfA = new DataDrivenFuture<T1>();

• Allocate an instance of a data-driven-future object (container)

• Object in container must be of type T1

async await(ddfA, ddfB, …) Stmt

• Create a new data-driven-task to start executing Stmt after all of ddfA, 
ddfB, … become available (i.e., after task becomes “enabled”)

ddfA.put(V) ;

• Store object V (of type T1) in ddfA, thereby making ddfA available

• Single-assignment rule: at most one put is permitted on a given DDF
ddfA.get()

• Return value (of type T1) stored in ddfA

• Can only be performed by async’s that contain ddfA in their await 
clause (hence no blocking is necessary for DDF gets)

35



COMP 322, Spring 2013 (V.Sarkar)

Differences between Futures and DDFs/DDTs
• Consumer task blocks on get() for each future that it reads, whereas 

async-await does not start execution till all DDFs are available
• Future tasks cannot deadlock, but it is possible for a DDT to block 

indefinitely (“deadlock”) if one of its input DDFs never becomes 
available

• DDTs and DDFs are more general than futures
—Producer task can only write to a single future object, where as a 

DDT can write to multiple DDF objects
—The choice of which future object to write to is tied to a future task 

at creation time, where as the choice of output DDF can be deferred 
to any point with a DDT

• DDTs and DDFs can be more implemented more efficiently than futures
—An “async await” statement does not block the worker, unlike a 

future.get() 
—You will never see the following message with “async await”
– “ERROR: Maximum number of hj threads per place reached” 

36



COMP 322, Spring 2013 (V.Sarkar)

Another Example with DDTs and DDFs
1. DataDrivenFuture left = new DataDrivenFuture();

2. DataDrivenFuture right = new DataDrivenFuture();

3. finish {

4.   async await(left) leftReader(left); // Task3

5.   async await(right) rightReader(right); // Task5

6.   async await(left,right) 

7.         bothReader(left,right); // Task4

8.   async left.put(leftWriter()); // Task1

9.   async right.put(rightWriter());// Task2

10. }

• await clauses capture data flow relationships

Interesting example.  Let’s discuss it further in Worksheet 13!

37



COMP 322, Spring 2013 (V.Sarkar)

Worksheet #13: Data-Driven Tasks
   For the example below, will reordering the five async statements change the 

meaning of the program?  If so, show two orderings that exhibit different behaviors.  
If not, explain why not.  (You can use the space below this slide for your answer.)

1. DataDrivenFuture left = new DataDrivenFuture();

2. DataDrivenFuture right = new DataDrivenFuture();

3. finish {

4.   async await(left) leftReader(left); // Task3

5.   async await(right) rightReader(right); // Task5

6.   async await(left,right) 

7.         bothReader(left,right); // Task4

8.   async left.put(leftWriter()); // Task1

9.   async right.put(rightWriter());// Task2

10. }

No, reordering consecutive async’s will never change the meaning of the program, 
whether or not the async’s have await clauses.

38



COMP 322, Spring 2013 (V.Sarkar)

Week 5 & 6 Lecture Quiz Solution,
Question 5: which of the following are true?

39



COMP 322, Spring 2013 (V.Sarkar)

Recap of HJ constructs studied in 
Lectures 1-13 

• Basic language summary can be found here:
—https://wiki.rice.edu/confluence/display/PARPROG/

HJLanguageSummary
—Additional documentation in preparation

• Task creation constructs
— async Stmt 
— async<T> { Stmt ; return ...; }
— forasync (point[i,j] : ...) Stmt
— forall (point[i,j] : ...) Stmt

• Loop constructs
— point
— region
— for (point[i,j] : ...) Stmt

40



COMP 322, Spring 2013 (V.Sarkar)

Recap of HJ constructs studied in 
Lectures 1-13  (contd)

• Synchronization constructs
— finish 
— f.get()
— finish accumulators
— next
— async await

• Efficiency constructs
— Converting async to async seq
— Loop chunking with GetChunk()
— Converting futures to data-driven futures

• Abstract metrics
— perf.doWork(n)

41



COMP 322, Spring 2013 (V.Sarkar)

• Phaser allocation
—phaser ph = new phaser(mode);

– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— phaserMode.SIG, phaserMode.WAIT, phaserMode.SIG_WAIT, phaserMode.SIG_WAIT_SINGLE
— NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
—async phased (ph1<mode1>, ph2<mode2>, … ) <stmt>

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– async phased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
—next; 

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

Summary of Phaser Construct
(Lecture 14)

42



COMP 322, Spring 2013 (V.Sarkar)

Simple Example with Four Async Tasks 
and One Phaser (Listing 43)

1. finish {

2.   ph = new phaser(); // Default mode is SIG_WAIT

3.   async phased(ph<phaserMode.SIG>){ //A1 (SIG mode)

4.     doA1Phase1(); next; 

5.     doA1Phase2(); }

6.   async phased { //A2 (default SIG_WAIT mode from parent)

7.     doA2Phase1(); next; 

8.     doA2Phase2(); }

9.   async phased { //A3 (default SIG_WAIT mode from parent)

10.    doA3Phase1(); next; 

11.    doA3Phase2(); }  

12.  async phased(ph<phaserMode.WAIT>){ //A4 (WAIT mode)

13.    doA4Phase1(); next; doA4Phase2(); }

14. }

43



COMP 322, Spring 2013 (V.Sarkar)

Simple Example with Four Async Tasks 
and One Phaser (Figure 48)

44

Semantics of next depends on registration mode 
SIG_WAIT: next = signal + wait 
SIG: next = signal 
WAIT: next = wait 

signal 

wait 
next 

SIG SIG_WAIT SIG_WAIT WAIT 

 A master thread (worker) gathers all signals and broadcasts a barrier completion 



COMP 322, Spring 2013 (V.Sarkar)

Week 5 & 6 Lecture Quiz Solution,
Question 6: which of the following are true?

45



COMP 322, Spring 2013 (V.Sarkar)

Solution to Worksheet #15: 
Left-Right Neighbor Synchronization using Phasers

COMP 322, Spring 2011 (V.Sarkar)!18 

Barrier & P-2-P Sync for 1-D 
Averaging!

doPhase1(i) 

doPhase2(i) 

 i=1   i=2    i=3    i=4    i=5    i=6    i=7    i=8 

1. finish {
2.   phaser[] ph = new phaser[m+2]; // array of phaser objects
3.   for(point [i]:[0:m+1]) ph[i] = new phaser();
4.   for(point [i] : [1:m])
5.    async phased(ph[i]<SIG>, ph[i-1]<WAIT>, ph[i+1]<WAIT>) { 
6.      doPhase1(i);
7.      next;
8.      doPhase2(i);
9.    }
10.}

46

Name 1: ___________________

Name 2: ___________________

Complete the phased clause below to implement the left-right 
neighbor synchronization shown above



1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2]; 

2. gVal[n+1] = 1; gNew[n+1] = 1;

3. phaser ph = new phaser[n+2];

4. finish { // phasers must be allocated in finish scope

5.   forall(point [i]:[0:n+1]) ph[i] = new phaser(); 

6.   forasync(point [j]:[1:n]) phased(ph[j]<phaserMode.SIG>, 

7.                    ph[j-1]<phaserMode.WAIT>,ph[j+1]<phaserMode.WAIT>){ 

8.     double[] myVal = gVal; double[] myNew = gNew; // Local pointers

9.     for (point [iter] : [0:numIters-1]) {

10.      myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

11.      next; // Point-to-point synchronization

12.      // Swap myVal and myNew

13.      double[] temp=myVal; myVal=myNew; myNew=temp;

14.      // myNew becomes input array for next iter

15.    } // for-iter

16.  } // forasync-j

17.} // finish

COMP 322, Spring 2013 (V.Sarkar)

One-Dimensional Iterative Averaging with 
Point-to-Point Synchronization (w/o chunking) 

47

iter = i

iter = i+1



COMP 322, Spring 2013 (V.Sarkar)

Signal statement
• When a task T performs a signal operation, it notifies all the 

phasers it is registered on that it has completed all the work 
expected by other tasks in the current phase (“shared” work). 
—Since signal is a non-blocking operation, an early execution of signal 

cannot create a deadlock.

• Later, when T performs a next operation, the next degenerates to a 
wait since a signal has already been performed in the current 
phase.

• The execution of “local work” between signal and next is 
performed during phase transition
—Referred to as a “split-phase barrier” or “fuzzy barrier”

48



COMP 322, Spring 2013 (V.Sarkar)

Example of Split-Phase Barrier 
(Listing 50)

49



COMP 322, Spring 2013 (V.Sarkar)

Computation Graph for Split-Phase Barrier Example 
(without async and finish nodes and edges)

4

11

5-signal 7-wait

12-signal 14-wait

ph.next
-start(0à1)

ph.next
-end(0à1)

8

15

spawn continue signal wait join

6

13

50



COMP 322, Spring 2013 (V.Sarkar)

Week 5 & 6 Lecture Quiz Solution,
Question 7: which of the following are true?

51



COMP 322, Spring 2013 (V.Sarkar)52

Announcements
• No lecture on Friday, Feb 22nd.

• No labs or lab quizzes this week

• No new lecture quiz this week.  The lecture quiz for Weeks 5 & 6 
was due on Tuesday night.

• Homework 3 is due by by 11:55pm on Friday, February 22, 2013

• Take-home midterm exam (Exam 1) will be given after lecture on 
Wednesday, February 20, 2013
—Will need to be returned to Sherry Nassar (Duncan Hall 3137) by 4pm 

on Friday, February 22, 2013
—Closed-book, closed computer written exam that can be taken in any 

2-hour duration during that period


