
COMP 322: Fundamentals of
Parallel Programming

Lecture 1:
The What and Why of Parallel Programming;
Task Creation & Termination (async, finish)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 1 13 January 2014

COMP 322, Spring 2014 (V.Sarkar)

Acknowledgments
—CS 194 course on “Parallel Programming for Multicore” taught by

Prof. Kathy Yelick, UC Berkeley, Fall 2007
– http://www.cs.berkeley.edu/~yelick/cs194f07/

—“Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder,
Addison-Wesley 2009

—COMP 322 Module 1 handout, Sections 0.1, 0.2, 1.1
—edX lecture and demonstration videos for Module 1, topic 1.1

2

COMP 322, Spring 2014 (V.Sarkar)3

What is Parallel Computing?
• Parallel computing: using multiple processors in parallel to solve

problems more quickly than with a single processor and/or with
less energy

• Examples of a parallel computer
—An 8-core Symmetric Multi-Processor (SMP) consisting of four

dual-core Chip Multi-Processors (CMPs)

Source: Figure 1.5 of Lin & Snyder
book, Addison-Wesley, 2009

CMP-0 CMP-1 CMP-2 CMP-3

COMP 322, Spring 2014 (V.Sarkar)

All Computers are Parallel Computers ---
Why?

4

COMP 322, Spring 2014 (V.Sarkar)5

Moore’s Law

Resulted in CPU clock speed
doubling roughly every 18
months, but not any longer

Gordon Moore (co-founder of
Intel) predicted in 1965 that
the transistor density of
semiconductor chips would
double roughly every 1-2
years

Slide source: Jack Dongarra

COMP 322, Spring 2014 (V.Sarkar)6
CS194 Lecure 15

Current Technology Trends

Source: Intel, Microsoft (Sutter)
and Stanford (Olukotun, Hammond)

• Chip density is
continuing to increase
~2x every 2 years
—Clock speed is not
—Number of processors

is doubling instead

• Parallelism must be
managed by software

COMP 322, Spring 2014 (V.Sarkar)7

Parallelism Saves Power
(Simplified Analysis)

Power = (Capacitance) * (Voltage)2 * (Frequency)

è Power is proportional to (Frequency)3

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz è Power = 8P

Option B: Use 2 cores at 1 GHz each è Power = 2P

• Option B delivers same performance as Option A with 4x less
power … provided software can be decomposed to run in parallel!

COMP 322, Spring 2014 (V.Sarkar)

A Real World Example
• Fermi vs. Kepler GPU chips from NVIDIA’s GeForce 600 Series

—Source: http://www.theregister.co.uk/2012/05/15/
nvidia_kepler_tesla_gpu_revealed/

8

Fermi chip (released
in 2010)

Kepler chip (released
in 2012)

Number of cores 512 1,536

Clock frequency 1.3 GHz 1.0 GHz

Power 250 Watts 195 Watts

Peak double precision
floating point
performance

665 Gigaflops 1310 Gigaflops
(1.31 Teraflops)

COMP 322, Spring 2014 (V.Sarkar)9

Scope of Course
• Fundamentals of parallel programming

— Primitive constructs for task creation & termination, collective & point-to-
point synchronization, task and data distribution, and data parallelism

— Abstract models of parallel computations and computation graphs
— Parallel algorithms & data structures including lists, trees, graphs, matrices
— Common parallel programming patterns

• Habanero-Java (HJ) library as a pedagogic parallel programming model
— Developed in the Habanero Multicore Software Research project at Rice

• Java Concurrency

• Beyond HJ and Java: Map-Reduce, CUDA, MPI

• Weekly quizzes in edX (due by Friday for each week)

• 6 Homeworks with written assignments and programming assignments
— Abstract metrics
— Real parallel systems in Rice’s Data Center

COMP 322, Spring 2014 (V.Sarkar)10

What is Parallel Programming?
• Specification of operations

that can be executed in
parallel

• A parallel program is
decomposed into sequential
subcomputations called tasks

• Parallel programming
constructs define task
creation, termination, and
interaction

BUS

Core 0 Core 1

L1 cache L1 cache

L2 Cache

Schematic of a dual-core
Processor

Task A Task B

COMP 322, Spring 2014 (V.Sarkar)11

Example of a Sequential Program:
Computing the sum of array elements

int sum = 0;

for (int i=0 ; i < X.length ; i++)

 sum += X[i];

Observations:

• The decision to sum up the
elements from left to right was
arbitrary

• The computation graph shows
that all operations must be
executed sequentially

Computation Graph

COMP 322, Spring 2014 (V.Sarkar)12

Parallelization Strategy for two cores
(Two-way Parallel Array Sum)

Basic idea:

• Decompose problem into two tasks for partial sums

• Combine results to obtain final answer

• Parallel divide-and-conquer pattern

+"

Task 0: Compute sum of
lower half of array

Task 1: Compute sum of
upper half of array

Compute total sum

COMP 322, Spring 2014 (V.Sarkar)13

Async and Finish Statements for Task
Creation and Termination

async S

• Creates a new child task that
executes statement S

finish S
§ Execute S, but wait until all

asyncs in S’s scope have
terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

COMP 322, Spring 2014 (V.Sarkar)

Two-way Parallel Array Sum
using async & finish constructs

14

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. finish {

4. async // Child task computes sum of lower half of array

5. for(int i=0; i < X.length/2; i++) sum1 += X[i];

6. // Parent task computes sum of upper half of array

7. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

8. }

9. // Parent task waits for child task to complete (join)

10. return sum1 + sum2;

 NOTE: This example uses pseudocode notation for async & finish instead of
concrete Habanero Java library syntax

COMP 322, Spring 2014 (V.Sarkar)

Lecture Modules
1. Deterministic Shared-Memory Parallelism: creation and coordination

of parallelism, collective & point-to-point synchronization (phasers,
barriers), abstract performance metrics (work, span, critical
paths), Amdahl's Law, weak vs. strong scaling, data races and
determinism, data race avoidance (immutability, futures,
accumulators, dataflow), deadlock avoidance, abstract vs. real
performance (granularity, scalability), parallel sorting algorithms.

2. Nondeterministic Shared-Memory Parallelism and Concurrency:
critical sections, atomicity, isolation, high level data races,
nondeterminism, linearizability, liveness/progress guarantees,
actors, request-response parallelism

3. Distributed-Memory Parallelism and Locality: memory hierarchies,
cache affinity, false sharing, message-passing (MPI),
communication overheads (bandwidth, latency), MapReduce, systolic
arrays, accelerators, GPGPUs.

15

COMP 322, Spring 2014 (V.Sarkar)16

COMP 322 Course Information: Spring 2014
• IMPORTANT:

—Send email to comp322-staff@mailman.rice.edu if you did
NOT receive a welcome email from us

—Bring your laptop to this week’s lab (Section A01: Monday,
Section A02: Wednesday) to ensure that you are properly
set up with all class infrastructure

• Course Requirements:
—Homeworks (6) 40% (written + programming components)
—Exams (2) 40% (take-home written exams)
—Weekly Quizzes 10% (on EdX)
—Class Participation 10% (in-class activities, lab attendance,

 classroom & on-line discussions, Q&A)

• HW1 will be assigned on Jan 17th and be due on Jan 31st

