
COMP 322: Fundamentals of
Parallel Programming

Lecture 16: Point-to-point Synchronization
with Phasers

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 16 21 February 2014

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #14: Data-Driven Tasks
 For the example below, will reordering the five async statements change the

meaning of the program? If so, show two orderings that exhibit different behaviors.
If not, explain why not. (You can use the space below this slide for your answer.)

1. DataDrivenFuture left = new DataDrivenFuture();

2. DataDrivenFuture right = new DataDrivenFuture();

3. finish {

4. async await(left) leftReader(left); // Task3

5. async await(right) rightReader(right); // Task5

6. async await(left,right)

7. bothReader(left,right); // Task4

8. async left.put(leftWriter()); // Task1

9. async right.put(rightWriter());// Task2

10. }

No, reordering consecutive async’s will never change the meaning of the program,
whether or not the async’s have await clauses.

2

COMP 322, Spring 2014 (V.Sarkar)

Motivation for Point-to-Point
Synchronization

1. finish(() -> { // Expanded finish-forasync version of forall

2. forasyncPhased(1, m, (i) -> {

3. doPhase1(i);

4. // Iteration i waits for i-1 and i+1 to complete Phase 1

5. doPhase2(i);

6. });

7. });

• Need synchronization where iteration i only waits for iterations i−1
and i+1 to complete their work in doPhase1() before it starts
doPhase2(i)
— Less constrained than a barrier --- only waits for two preceding iterations

— More general than async await --- waiting occurs in middle of task

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

COMP 322, Spring 2014 (V.Sarkar)

Point-to-point synchronization

(Left-right neighbor synchronization)

iter = i

iter = i+1

Barrier synchronization

Barrier vs Point-to-Point Synchronization for
One-Dimensional Iterative Averaging Example

iter = i

iter = i+1

4

COMP 322, Spring 2014 (V.Sarkar)

Phasers: a unified construct for barrier
and point-to-point synchronization

• HJ phasers unify barriers with point-to-point synchronization
—Inspiration for java.util.concurrent.Phaser

• Previous example motivated the need for “point-to-point”
synchronization
— With barriers, phase i of a task waits for all tasks associated with the

same barrier to complete phase i-1

— With phasers, phase i of a task can select a subset of tasks to wait for

• Phaser properties
—Support for barrier and point-to-point synchronization
—Support for dynamic parallelism --- the ability for tasks to drop phaser

registrations on termination (end), and for new tasks to add phaser
registrations (async phased)

—A task may be registered on multiple phasers in different modes
—Deadlock freedom --- a next operation will not lead to a situation where

all active tasks are blocked indefinitely
– but use of explicit doWait() can lead to deadlock

5

COMP 322, Spring 2014 (V.Sarkar)

Simple Example with Four Async Tasks
and One Phaser

1. finish (() -> {
2. ph = newPhaser(HjPhaserMode.SIG_WAIT); // mode is SIG_WAIT
3. asyncPhased(ph.inMode(HjPhaserMode.SIG), () -> {
4. // A1 (SIG mode)
5. doA1Phase1(); next(); doA1Phase2(); });
6. asyncPhased(ph.inMode(HjPhaserMode.DEFAULT_MODE), () -> {
7. // A2 (default SIG_WAIT mode from parent)

8. doA2Phase1(); next(); doA2Phase2(); });
9. asyncPhased(ph.inMode(HjPhaserMode.DEFAULT_MODE), () -> {
10. // A3 (default SIG_WAIT mode from parent)
11. doA3Phase1(); next(); doA3Phase2(); });
12. asyncPhased(ph.inMode(HjPhaserMode.WAIT), () -> {
13. // A4 (WAIT mode)
14. doA4Phase1(); next(); doA4Phase2(); });
15. });

6

COMP 322, Spring 2014 (V.Sarkar)

Simple Example with Four Async Tasks
and One Phaser

7

Semantics of next depends on registration mode
SIG_WAIT: next = signal + wait
SIG: next = signal
WAIT: next = wait

signal

wait
next

SIG SIG_WAIT SIG_WAIT WAIT

 A master thread (worker) gathers all signals and broadcasts a barrier completion

COMP 322, Spring 2014 (V.Sarkar)

• Phaser allocation
—HjPhaser ph = newPhaser(mode);

– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— HjPhaserMode.SIG, HjPhaserMode.WAIT,

HjPhaserMode.SIG_WAIT, HjPhaserMode.SIG_WAIT_SINGLE
– NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
—asyncPhased (ph1.inMode(<mode1>), ph2.inMode(<mode2>), … () -> <stmt>)

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– asyncPhased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
—next();

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

Summary of Phaser Construct

8

COMP 322, Spring 2014 (V.Sarkar)

So, what is a phaser
and how does it work?

• A phaser is a synchronization object --- you can allocate as many phasers
as you choose, and also build arrays/collections of phasers

• The task that allocates a phaser is automatically registered on the phaser
in the mode specified in the constructor (SIG_WAIT is the default mode)

• A task can be registered on multiple phasers in different modes, specified
in its “async phased” clause or due to its phaser allocations

• A “next” operation performs all signal operations followed by all wait
operations, according to the task’s phaser registrations
— Ordering of signal-wait avoids deadlock
— Degenerates gracefully when wait set or signal set is empty

• A registration on phaser ph in mode m can only be included in “async
phased” if the parent was also registered on ph with mode m (capability
rule)

• Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF) for
the allocation i.e., if phaser ph is allocated in finish scope F, then the task
executing F drops any registration that it has on ph when reaching the end-
finish point for F

9

COMP 322, Spring 2014 (V.Sarkar)

Capability Hierarchy

• A task can be registered in one of four modes with respect to a
phaser: SIG_WAIT_SINGLE, SIG_WAIT, SIG, or WAIT. The mode
defines the set of capabilities — signal, wait, single — that the task
has with respect to the phaser. The subset relationship defines a
natural hierarchy of the registration modes. A task can drop (but
not add) capabilities after initialization.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }

10

COMP 322, Spring 2014 (V.Sarkar)

next-end

signal edges

wait edges

next-start

single-statement

Next-with-Single Statement
(for SIG_WAIT_SINGLE registration mode)

 next <single-stmt> is a
barrier in which single-
stmt is performed
exactly once after all
tasks have completed
the previous phase
and before any task
begins its next phase.

 NOTE: single
statement are not
currently implemented
in HJ-lib

 Modeling next-with-single
in the Computation Graph

11

COMP 322, Spring 2014 (V.Sarkar)

Left-Right Neighbor Synchronization
Example for m=3

1.finish(() -> { // Task-0
2. final HjPhaser ph1 = newPhaser(SIG_WAIT);
3. final HjPhaser ph2 = newPhaser(SIG_WAIT);
4. final HjPhaser ph3 = newPhaser(SIG_WAIT);
5. asyncPhased(ph1.inMode(SIG), ph2.inMode(WAIT), () -> { // Task-1
6. doPhase1(1);
7. next(); // signals ph1, waits on ph2
8. doPhase2(1);
9. });
10. asyncPhased(ph2.inMode(SIG), ph3.inMode(WAIT), () -> { // Task-2
11. doPhase1(2);
12. next(); // signals ph2, waits on ph3
13. doPhase2(2);
14. });
15. asyncPhased(ph3.inMode(SIG), ph2.inMode(WAIT), () -> { // Task-3
16. doPhase1(3);
17. next(); // signals ph3, waits on ph2
18. doPhase2(3);
19. });
20.}); // finish

12

COMP 322, Spring 2014 (V.Sarkar)

Computation Graph for m=3 example

13

1,2,3,4

6

11

16

7-signal 7-wait

12-signal

17-signal

12-wait

17-wait

ph1.next
-start(0!1)

ph1.next
-end(0!1)

ph2.next
-start(0!1)

ph2.next
-end(0!1)

ph3.next
-start(0!1)

ph3.next
-end(0!1)

8

13

18

20-drop 20-end-finish

spawn continue signal wait join

COMP 322, Spring 2014 (V.Sarkar)

Adding Phaser Operations to the
Computation Graph

CG node = step
Step boundaries are induced by continuation points
• async: source of a spawn edge

• end-finish: destination of join edges

• future.get(): destination of a join edge

• signal, drop: source of signal edges

• wait: destination of wait edges
• next: modeled as signal + wait
CG also includes an unbounded set of pairs of phase transition nodes

for each phaser ph allocated during program execution

• ph.next-start(i!i+1) and ph.next-end(i!i+1)

14

COMP 322, Spring 2014 (V.Sarkar)

Adding Phaser Operations to the
Computation Graph (contd)

CG edges enforce ordering constraints among the nodes

• continue edges capture sequencing of steps within a task
• spawn edges connect parent tasks to child async tasks

• join edges connect descendant tasks to their Immediately
Enclosing Finish (IEF) operations and to get() operations for future
tasks

• signal edges connect each signal or drop operation to the
corresponding phase transition node, ph.next-start(i!i+1)

• wait edges connect each phase transition node, ph.next-
end(i!i+1) to corresponding wait or next operations

• single edges connect each phase transition node, ph.next-
start(i!i+1) to the start of a single statement instance, and from
the end of that single statement to the phase transition node,
ph.next-end(i!i+1)

15

COMP 322, Spring 2014 (V.Sarkar)

forall barrier is just an implicit phaser
1. forallPhased(iLo, iHi, jLo, jHi, (i, j) -> {

2. S1; next(); S2; next();{...}

3. });

is equivalent to

1. finish(() -> {

2. // Implicit phaser for forall barrier

3. final HjPhaser ph = newPhaser(SIG_WAIT);

4. forseq(iLo, iHi, jLo, jHi, (i, j) -> {

5. asyncPhased(ph.inMode(SIG_WAIT), () -> {

6. S1; next(); S2; next();{...}

7. }); // next statements in async refer to ph

8. });

16

COMP 322, Spring 2014 (V.Sarkar)17

The world according to COMP 322
before Barriers and Phasers

• Most of the parallel constructs that we learned during
Lectures 1-11 focused on task creation and termination
—async creates a task

– forasync creates a set of tasks specified by an iteration
region

—finish waits for a set of tasks to terminate
– forall (like “finish forasync”) creates and waits for a set

of tasks specified by an iteration region
—future get() waits for a specific task to terminate
—asyncAwait() waits for a set of DataDrivenFuture values

before starting
• Motivation for barriers and phasers

—Deterministic directed synchronization within tasks
—Separate from synchronization associated with task

creation and termination

COMP 322, Spring 2014 (V.Sarkar)

The world according to COMP 322 after
Barriers and Phasers

• SPMD model: express iterative synchronization using phasers
—Implicit phaser in a forall supports barriers as “next” statements

– Matching of next statements occurs dynamically during program
execution

– Termination signals “dropping” of phaser registration
—Explicit phasers

– Can be allocated and transmitted from parent to child tasks
– Phaser lifetime is restricted to its IEF (Immediately Enclosing Flnish)

scope of its creation
– Four registration modes -- SIG, WAIT, SIG_WAIT, SIG_WAIT_SINGLE
– signal statement can be used to support “fuzzy” barriers
– bounded phasers can limit how far ahead producer gets of

consumers

• Difference between phasers and data-driven tasks (DDTs)
—DDTs enforce a single point-to-point synchronization at the start of a task
—Phasers enforce multiple point-to-point synchronizations within a task

18

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #16:
Left-Right Neighbor Synchronization using Phasers

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

1. finish (() -> {
2. final HjPhaser[] ph =
 new HjPhaser[m+2]; // array of phaser objects
3. forseq(0, m+1, (i) -> { ph[i] = newPhaser(SIG_WAIT) });
4. forseq(1, m, (i) -> {
5. asyncPhased(
 ph[i-1].inMode(......),
 ph[i].inMode(......),
 ph[i+1].inMode(......), () {
6. doPhase1(i);
7. next();
8. doPhase2(i); }); // asyncPhased
9. }); // forseq
10.}); // finish

19

Name: ___________________

Netid: ___________________

Complete the phased clause below to implement the left-right neighbor
synchronization shown above.

COMP 322: Fundamentals of Parallel Programming (Spring 2014)
Instructor: Vivek Sarkar

Worksheet 15: due by start of next class

Name: __________________________ Netid: _______________

Honor Code Policy: You are free to discuss all aspects of in-class worksheets with your
other classmates, the teaching assistants and the professor during the class. You can
work in a group in a class, and write down the solution that you obtained as a group. If
you work on the worksheet outside of class, then it must be an individual effort. If you
use any material from external sources, you must provide proper attribution.

HJ-Lib Module 1 APIs

Consider the following HJ-Lib APIs:
1. async(HjRunnable runnable)
2. asyncAwait(HjFuture<? extends Object> f1,

HjRunnable runnable)
3. asyncSeq(boolean sequentialize, HjRunnable runnable)
4. doWork(long n)
5. finish(FinishAccumulator f1, HjRunnable runnable)
6. forall(Iterable<T> iterable, HjProcedure<T> body)
7. forasyncChunked(int startInc, int endInc,

HjProcedure<Integer> body)
8. future(HjCallable<V> callable)
9. futureAwait(HjFuture<? extends Object> f1,

HjCallable<V> callable)
10. next()

For each of the following functionalities, enter the number of the API above that matches
the functionality:

Functionality API number

