
COMP 322: Fundamentals of
Parallel Programming

Lecture 18: Midterm Review

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 18 26 February 2014

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #17:
Critical Path Length for Computation with Signal Statement

1.finish(() -> {
2. final HjPhaser ph = newPhaser(SIG_WAIT);
3. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T1
4. A(0); doWork(1); // Shared work in phase 0
5. signal();
6. B(0); doWork(100); // Local work in phase 0
7. next(); // Wait for T2 to complete shared work in phase 0
8. C(0); doWork(1);
9. });
10. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T2
11. A(1); doWork(1); // Shared work in phase 0
12. next(); // Wait for T1 to complete shared work in phase 0
13. C(1); doWork(1);
14. D(1); doWork(100); // Local work in phase 0
15. });
16.}); // finish

2

Name: ___________________ Netid: ___________________
Compute the WORK and CPL values for the program shown below. How would they be different
if the signal() statement was removed? (WORK = 204, CPL = 102)

COMP 322, Spring 2014 (V. Sarkar)3

Async and Finish Constructs
 for Task Creation and Termination (Lecture 1)

async S
• Creates a new child task that executes

statement S

finish S
§ Execute S, but wait until all asyncs in

S’s scope have terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

Acknowledgments: X10 and Habanero projects

COMP 322, Spring 2014 (V. Sarkar)

Two-way Parallel Array Sum
using HJ-Lib’s finish & async API’s

4

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. finish(() -> {

4. async(() -> {

5. // Child task computes sum of lower half of array

6. for(int i=0; i < X.length/2; i++) sum1 += X[i];

7. });

8. // Parent task computes sum of upper half of array

9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. });

11. // Parent task waits for child task to complete (join)

12. return sum1 + sum2;

COMP 322, Spring 2014 (V. Sarkar)5

Computation Graphs (Lecture 2)
• A Computation Graph (CG) captures the dynamic

execution of a parallel program, for a specific input
• CG nodes are “steps” in the program’s execution

— A step is a sequential subcomputation without any async,
begin-finish and end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
— “Spawn” edges connect parent tasks to child async tasks
— “Join” edges connect the end of each async task to its IEF’s

end-finish operations

• All computation graphs must be acyclic
— It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic
graphs” (dags)

COMP 322, Spring 2014 (V. Sarkar)6

Which statements can potentially be executed
in parallel with each other?

1. finish { // F1

2. async A;

3. finish { // F2

4. async B1;

5. async B2;

6. } // F2

7. B3;

8. } // F1 F1-endF1-start F2-start F2-end

A

B1

B2

B3

Computation Graph

spawn join

COMP 322, Spring 2014 (V. Sarkar)7

Complexity Measures for Computation Graphs

Define
• TIME(N) = execution time of node N
• WORK(G) = sum of TIME(N), for all nodes N in CG G

— WORK(G) is the total work to be performed in G
• CPL(G) = length of a longest path in CG G, when adding up

execution times of all nodes in the path
— Such paths are called critical paths
— CPL(G) is the length of these paths (critical path length)
— CPL(G) is also the smallest possible execution time for

the computation graph

COMP 322, Spring 2014 (V. Sarkar)8

Ideal Parallelism

• Define ideal parallelism of
Computation G Graph as the ratio,
WORK(G)/CPL(G)

• Ideal Parallelism is independent of
the number of processors that the
program executes on, and only
depends on the computation graph

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1

Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

COMP 322, Spring 2014 (V.Sarkar)9

Bounding the performance of Greedy Schedulers
(Lecture 3)

Combine lower and upper bounds to get

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution
time TP that is within a factor of 2 of the optimal time
(since max(a,b) and (a+b) are within a factor of 2 of
each other, for any a ≥ 0,b ≥ 0).

Corollary 2: Lower and upper bounds approach the
same value whenever

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism, WORK(G)/CPL(G) << P

COMP 322, Spring 2014 (V.Sarkar)10

Amdahl’s Law [1967] (Lecture 4)
• If q ≤ 1 is the fraction of WORK in a parallel program that must be

executed sequentially for a given input size S, then the best speedup
that can be obtained for that program is Speedup(S,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on
parallel execution time
— CPL >= q * T(S,1)
— T(S,P) >= q * T(S,1)
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in program
can be divided into sequential and parallel portions
— Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)

— Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into account

COMP 322, Spring 2014 (V. Sarkar)

Extending Async Tasks with
Return Values (Lecture 5)

• Example Scenario in PseudoCode
1. // Parent task creates child async task
2. final future container =
3. async { return computeSum(X, low, mid); };
4. . . .
5. // Later, parent examines the return value
6. int sum = container.get();

• Two issues to be addressed:
1) Distinction between container and value in container (box)
2) Synchronization to avoid race condition in container accesses

11

Parent Task Child Task
container = async {...}
. . .
container.get()

computeSum(...)
return ...

return valuecontainer

COMP 322, Spring 2014 (V. Sarkar)12

HJ Futures: Tasks with Return Values

async { Stmt-Block }

• Creates a new child task that
executes Stmt-Block, which
must terminate with a return
statement and return value

• Async expression returns a
reference to a container of
type future

Expr.get()
• Evaluates Expr, and blocks if

Expr’s value is unavailable
• Unlike finish which waits for all

tasks in the finish scope, a get()
operation only waits for the
specified async expression

COMP 322, Spring 2014 (V. Sarkar)

1. // Parent Task T1 (main program)

2. // Compute sum1 (lower half) and sum2 (upper half) in parallel

3. final HjFuture sum1 = future (() -> { // Future Task T2

4. int sum = 0;

5. for(int i=0 ; i < X.length/2 ; i++) sum += X[i];

6. return sum;

7. });

8. final HjFuture sum2 = future (() ->{ // Future Task T3

9. int sum = 0;

10. for(int i=X.length/2 ; i < X.length ; i++) sum += X[i];

11. return sum;

12. });

13. //Task T1 waits for Tasks T2 and T3 to complete

14. int total = sum1.get() + sum2.get();

13

Example: Two-way Parallel Array Sum
using Future Tasks in HJ-Lib

COMP 322, Spring 2014 (V.Sarkar)

Use of Finish Accumulators to count solutions
in Parallel NQueens (Lecture 6)

1. final FinishAccumulator ac =

2. newFinishAccumulator(Operator.SUM, int.class);

3. finish(ac) nqueens_kernel(new int[0], 0);

4. System.out.println(“No. of solutions = “ + ac.get().intValue())

5. . . .

6. void nqueens_kernel(int [] a, int depth) {

7. if (size == depth) ac.put(1);

8. else

9. /* try each possible position for queen at depth */

10. for (int i = 0; i < size; i++) async {

11. /* allocate a temporary array and copy array a into it */

12. int [] b = new int [depth+1];

13. System.arraycopy(a, 0, b, 0, depth);

14. b[depth] = i;

15. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

16. } // for-async

17. } // nqueens_kernel()

14

COMP 322, Spring 2013 (V.Sarkar)

Functional vs. Structural Determinism
(Lecture 7)

• A parallel program is said to be functionally
deterministic if it always computes the same
answer when given the same input

• A parallel program is said to be structurally
deterministic if it always produces the same
computation graph when given the same input

• Race-Free Determinism
—If a parallel program is written using the

constructs learned so far (finish, async,
futures) and is known to be race-free, then it
must be both functionally deterministic and
structurally deterministic

15

COMP 322, Spring 2013 (V.Sarkar)

A Classification of Parallel Programs

16

Data Race
Free?

Functionally
Deterministic?

Structurally
Deterministic?

Example: String Search
variation

Yes Yes Yes Count of all occurrences
No Yes Yes Existence of an occurrence
No No Yes Index of any occurrence
No Yes No “Eureka” extension for

existence of an occurrence: do
not create more async tasks
after occurrence is found

No No No “Eureka” extension for index of
an occurrence: do not create
more async tasks after
occurrence is found

Data-Race-Free Determinism Property implies that it is not possible to write an
HJ program with Yes in column 1, and No in column 2 or column 3 (when only
using Module 1 constructs)

COMP 322, Spring 2014 (V.Sarkar)

Map Reduce: Summary (Lecture 8)
• Input set is of the form {(k1, v1), . . . (kn, vn)}, where

(ki, vi) consists of a key, ki, and a value, vi.
—Assume that the key and value objects are immutable,
and that equality comparison is well defined on all key
objects.

• Map function f generates sets of intermediate key-value
pairs, f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}. The kj′ keys can
be different from ki key in the input of the map function.
—Assume that a flatten operation is performed as a
post-pass after the map operations, so as to avoid
dealing with a set of sets.

• Reduce operation groups together intermediate key-value
pairs, {(k′, vj′)} with the same k’, and generates a reduced
key-value pair, (k′,v′′), for each such k’, using reduce
function g

17

COMP 322, Spring 2014 (V.Sarkar)

MapReduce: The Map Step

vk

k' v'

k' v'
map

vk

vk

…
k' v'

map

Input set of
key-value pairs

Flattened intermediate
set of key-value pairs

…

k' v'map

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

18

COMP 322, Spring 2014 (V.Sarkar)

MapReduce: The Reduce Step

k' v'

…

k' v'

k' v'

k' v'

Intermediate
key-value pairs

group

reduce

reduce
k' v''

v''

v''

…

k' v'

…

k' v'

k' v' v'

v' v'

Key-value groups
Output
key-value pairs

k'

k'

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

19

COMP 322, Spring 2013 (V.Sarkar)

seq clause for async statements
(Lecture 10)

1. // Async task

2. async seq(size < thresholdSize) computeSum(X, lo, mid);

3.

4. // Future example

5. final future<int> sum1 = future seq(size < thresholdSize)

6. { return computeSum(X, lo,
mid); };

• “seq” clause specifies condition under which async should be executed
sequentially

• False ⇒ an async is created

• True ⇒ the parent executes async body sequentially

• Avoids the need to duplicate code for both cases

20

COMP 322, Spring 2014 (V.Sarkar)

1.protected static void quicksort(

2. final Comparable[] A, final int M, final int N) {

3. if (M < N) {

4. // A point in HJ is an integer tuple

5. HjPoint p = partition(A, M, N);

6. int I = p.get(0);

7. int J = p.get(1);

8. asyncSeq(I - M <= 5, () -> quicksort(A, M, I));

9. asyncSeq(N - J <= 5, () -> quicksort(A, J, N));

10. }

11. }

Use of asyncSeq API in HJlib
(Quicksort example)

21

COMP 322, Spring 2014 (V. Sarkar)

Nqueens example with seq clause

22

1. void nqueensKernel(final int[] a, final int depth,
 final FinishAccumulator ac) {

2. if (size == depth) {
3. ac.put(1);
4. return;
5. }
6. /* try each possible position for queen <depth> */
7. for (int i = 0; i < size; i++) {
8. final int ii = i;
9. asyncSeq(depth >= cutoff_value, () -> {
10. /* allocate a temporary array and copy <a> into it */
11. final int[] b = new int[depth + 1];
12. System.arraycopy(a, 0, b, 0, depth);
13. b[depth] = ii;
14. if (boardValid((depth + 1), b)) {
15. nqueensKernel(b, depth + 1, ac);
16. }
17. });
18. }
19. }

COMP 322, Spring 2013 (V.Sarkar)

Venn diagram of binary functions

23

All

Associative

Associative &
Commutative

(Prefix Sum & Finish Accumulator return same result as Sequential)

(Prefix Sum returns
same result as

Sequential)
Commutative

f(x,y)

h(x,y)
g(x,y)

COMP 322, Spring 2014 (V. Sarkar)

Observations on finish-for-async version
(Lecture 11)

• finish and async are general constructs, and are not
specific to loops

— Not easy to discern from a quick glance which loops are
sequential vs. parallel

• Loops in sequential version of matrix multiplication are
“perfectly nested”

— e.g., no intervening statement between “for(i = ...)” and
“for(j = ...)”

• The ordering of loops nested between finish and async is
arbitrary

— They are parallel loops and their iterations can be
executed in any order

24

COMP 322, Spring 2014 (V.Sarkar)

forall API’s in HJlib
(http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html)

• static void
forall(edu.rice.hj.api.HjRegion.HjRegion1D hjRegion,
edu.rice.hj.api.HjProcedureInt1D body)

• static void
forall(edu.rice.hj.api.HjRegion.HjRegion2D hjRegion,
edu.rice.hj.api.HjProcedureInt2D body)

• static void
forall(edu.rice.hj.api.HjRegion.HjRegion3D hjRegion,
edu.rice.hj.api.HjProcedureInt3D body)

• static void forall(int s0, int e0,
edu.rice.hj.api.HjProcedure<java.lang.Integer> body)

• static void forall(int s0, int e0, int s1, int e1,
edu.rice.hj.api.HjProcedureInt2D body)

• static <T> void forall(java.lang.Iterable<T> iterable,
edu.rice.hj.api.HjProcedure<T> body)

• NOTE: all forall API’s include an implicit finish. forasync is like
forall, but without the finish.

25

COMP 322, Spring 2014 (V. Sarkar)

forall examples: updates to a
two-dimensional Java array

// Case 1: loops i,j can run in parallel

forall(0, m-1, 0, n-1, (i, j) -> { A[i][j] = F(A[i][j]);});

// Case 2: only loop i can run in parallel

forall(1, m-1, (i) -> {

 forseq(1, n-1, (j) -> { // Equivalent to “for (j=1;j<n;j++)”

 A[i][j] = F(A[i][j-1]) ;

}); });

// Case 3: only loop j can run in parallel

forseq(1, m-1, (i) -> { // Equivalent to “for (i=1;i<m;j++)”

 forall(1, n-1, (j) -> {

 A[i][j] = F(A[i-1][j]) ;

}); });

26

COMP 322, Spring 2014 (V.Sarkar)

One-Dimensional Iterative Averaging Example

• Initialize a one-dimensional array of (n+2) double’s with boundary
conditions, myVal[0] = 0 and myVal[n+1] = 1.

• In each iteration, each interior element myVal[i] in 1..n is replaced
by the average of its left and right neighbors.
—Two separate arrays are used in each iteration, one for old

values and the other for the new values

• After a sufficient number of iterations, we expect each element of
the array to converge to myVal[i] = i/(n+1)
—In this case, myVal[i] = (myVal[i-1]+myVal[i+1])/2, for all i in 1..n

—

Illustration of an intermediate step for n = 8 (source: Figure 6.19 in Lin-Snyder book)

27

COMP 322, Spring 2014 (V.Sarkar)

Example: HJ code for One-Dimensional Iterative
Averaging with forseq-forall structure w/ chunking

1. int nc = numWorkerThreads();

2. forseq(0, m-1, (iter) -> {

3. // Compute MyNew as function of input array MyVal

4. forallChunked(1, n, n/nc, (j) -> { // Create n tasks

5. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

6. }); // forall

7. temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew;

8. // myNew becomes input array for next iteration

9. }); // for

28

COMP 322, Spring 2014 (V.Sarkar)

Barriers (Lecture 12)
• Question: how can we transform this code so as to ensure that all tasks say hello

before any tasks say goodbye?

• Approach 2: insert a “barrier” between the hello’s and goodbye’s
— “next” statement in HJ’s forall loops

1. // APPROACH 2

2. forallPhased (0, m - 1, (i) -> {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. next(); // Barrier

6. System.out.println(“Goodbye from task with square = “ + sq);

7. });

• next è each forall iteration suspends at next until all iterations arrive (complete
previous phase), after which the phase can be advanced
— If a forall iteration terminates before executing “next”, then the other

iterations do not wait for it
— Scope of next is the closest enclosing forall statement
— Special case of “phaser” construct (will be covered later in class)

29

Phase 0

Phase 1

COMP 322, Spring 2014 (V.Sarkar)

Observation 1: Scope of synchronization for
“next” is closest enclosing forall statement

1. forallPhased (0, m - 1, (i) -> {
2. println(“Starting forall iteration ” + i);
3. next(); // Acts as barrier for forall-i
4. forallPhased (0, n - 1, (j) -> {
5. println(“Hello from task (“ + i + “,” + j + “)”);
6. next(); // Acts as barrier for forall-j
7. println(“Goodbye from task (“ + i + “,” + j + “)”);
8. } // forall-j
9. next(); // Acts as barrier for forall-i
10. println(“Ending forall iteration ” + i);
11.}); // forall-i

30

COMP 322, Spring 2014 (V.Sarkar)

Observation 2: If a forall iteration terminates before
“next”, then other iterations do not wait for it

1. forallPhased (0, m - 1, (i) -> {

2. forseq (0, i, (j) -> {

3. // forall iteration i is executing phase j

4. System.out.println("(" + i + "," + j + ")");

5. next();

6. });

7. });

• Outer forall-i loop has m iterations, 0…m-1

• Inner sequential j loop has i+1 iterations, 0…i

• Line 4 prints (task,phase) = (i, j) before performing a next operation.

• Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and
then terminates. Iteration i = 1 of the forall-i loop prints (1,0),
performs a next, prints (1,1), performs a next, and then terminates.
And so on.

31

COMP 322, Spring 2014 (V.Sarkar)

HJ code for One-Dimensional Iterative Averaging
with grouped forall-forseq structure and barriers (Lecture 13)

1. double[] gVal=new double[n+2]; gVal[n+1] = 1;

2. double[] gNew=new double[n+2];

3. HjRegion1D iterSpace = newRectangularRegion1D(1,m);

4. int nc = numWorkerThreads();

5. forallPhased(1, nc, (jj) -> { // Create nc tasks

6. // Initialize myVal and myNew as local pointers

7. double[] myVal = gVal; double[] myNew = gNew;

8. forseq(0, m-1, (iter) -> {

9. forseq(myGroup(jj,iterSpace,nc), (j) -> {

10. // Compute MyNew as function of input array MyVal

11. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

12. }); // forseq

13. next(); // Barrier before executing next iteration of iter loop

14. // Swap local pointers, myVal and myNew

15. double[] temp=myVal; myVal=myNew; myNew=temp;

16. // myNew becomes input array for next iter

17. }); // forseq

18. }); // forall

32

This program creates nc async tasks, and
performs m barrier operations per task

COMP 322, Spring 2014 (V.Sarkar)

Single Program Multiple Data (SPMD)
Parallel Programming Model

Basic idea

• Run the same code (program) on P workers

• Use the “rank” --- an ID ranging from 0 to (P-1) --- to determine what
data is processed by which worker
—Hence, “single-program” and “multiple-data”
—Rank is equivalent to index in a top-level “forall (point[i] : [0:P-1])” loop

• Lower-level programming model than dynamic async/finish parallelism
—Programmer’s code is essentially at the worker level (each forall iteration is

like a worker), and work distribution is managed by programmer by using
barriers and other synchronization constructs

—Harder to program but can be more efficient for restricted classes of
applications (e.g. for OneDimAveraging, but not for nqueens)

• Convenient for hardware platforms that are not amenable to efficient
dynamic task parallelism

—General-Purpose Graphics Processing Unit (GPGPU) accelerators
—Distributed-memory parallel machines

33

COMP 322, Spring 2014 (V. Sarkar)

Macro-Dataflow Programming (Lecture 14)

TaskA! TaskB!

TaskA!

TaskC!
main!

TaskB!

• “Macro-dataflow” = extension of dataflow model from instruction-level to task-
level operations
• General idea: build an arbitrary task graph, but restrict all inter-task
communications to single-assignment variables

• Static dataflow ==> graph fixed when program execution starts
• Dynamic dataflow ==> graph can grow dynamically

• Semantic guarantees: race-freedom, determinism
• Deadlocks are possible due to unavailable inputs (but they are
deterministic)

Communication via single-
assignment variable

43

COMP 322, Spring 2014 (V. Sarkar)

Extending HJ Futures for Macro-Dataflow:
Data-Driven Futures (DDFs) and Data-Driven Tasks (DDTs)

HjDataDrivenFuture<T1> ddfA = newDataDrivenFuture();

• Allocate an instance of a data-driven-future object (container)
• Object in container must be of type T1
asyncAwait(ddfA, ddfB, …, () -> Stmt);

• Create a new data-driven-task to start executing Stmt after all of ddfA,
ddfB, … become available (i.e., after task becomes “enabled”)

ddfA.put(V) ;

• Store object V (of type T1) in ddfA, thereby making ddfA available
• Single-assignment rule: at most one put is permitted on a given DDF
ddfA.get()
• Return value (of type T1) stored in ddfA
• Can only be performed by async’s that contain ddfA in their await clause

(hence no blocking is necessary for DDF gets)

35

COMP 322, Spring 2014 (V. Sarkar)

Differences between Futures and DDFs/DDTs
• Consumer task blocks on get() for each future that it reads, whereas

async-await does not start execution till all DDFs are available
• Future tasks cannot deadlock, but it is possible for a DDT to block

indefinitely (“deadlock”) if one of its input DDFs never becomes
available

• DDTs and DDFs are more general than futures
— Producer task can only write to a single future object, where as a

DDT can write to multiple DDF objects
— The choice of which future object to write to is tied to a future task

at creation time, where as the choice of output DDF can be
deferred to any point with a DDT

• DDTs and DDFs can be more implemented more efficiently than
futures
— An “asyncAwait” statement does not block the worker, unlike a

future.get()
— You will never see the following message with “asyncAwait”

– “ERROR: Maximum number of hj threads per place reached”

36

COMP 322, Spring 2014 (V.Sarkar)

• Phaser allocation
— HjPhaser ph = newPhaser(mode);

– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— HjPhaserMode.SIG, HjPhaserMode.WAIT,

HjPhaserMode.SIG_WAIT, HjPhaserMode.SIG_WAIT_SINGLE
– NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
— asyncPhased (ph1.inMode(<mode1>), ph2.inMode(<mode2>), … () -> <stmt>)

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– asyncPhased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
— next();

– Advance each phaser that current task is registered on to its next phase
All signals are performed, followed by all waits

– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

Summary of Phaser Construct
(Lecture 16)

37

COMP 322, Spring 2014 (V.Sarkar)

Left-Right Neighbor Synchronization
Example for m=3

1.finish(() -> { // Task-0
2. final HjPhaser ph1 = newPhaser(SIG_WAIT);
3. final HjPhaser ph2 = newPhaser(SIG_WAIT);
4. final HjPhaser ph3 = newPhaser(SIG_WAIT);
5. asyncPhased(ph1.inMode(SIG),ph2.inMode(WAIT),
6. () -> { doPhase1(1);
7. next(); // signals ph1, waits on ph2
8. doPhase2(1);
9. }); // Task T1
10. asyncPhased(ph2.inMode(SIG),ph1.inMode(WAIT),ph3.inMode(WAIT),
11. () -> { doPhase1(2);
12. next(); // signals ph2, waits on ph3
13. doPhase2(2);
14. }); // Task T2
15. asyncPhased(ph3.inMode(SIG),ph2.inMode(WAIT),
16. () -> { doPhase1(3);
17. next(); // signals ph3, waits on ph2
18. doPhase2(3);
19. }); // Task T3
20.}); // finish

38

COMP 322, Spring 2014 (V.Sarkar)

Computation Graph for m=3 example

39

1,2,3,4

6

11

16

7-signal 7-wait

12-signal

17-signal

12-wait

17-wait

ph1.next
-start(0à1)

ph1.next
-end(0à1)

ph2.next
-start(0à1)

ph2.next
-end(0à1)

ph3.next
-start(0à1)

ph3.next
-end(0à1)

8

13

18

20-drop 20-end-finish

spawn continue signal wait join

COMP 322, Spring 2014 (V.Sarkar)40

Announcements
• Take-home midterm exam (Exam 1) will be given after lecture on

Wednesday, February 26, 2014
—Closed-book, closed computer, written exam that can be taken in any

2-hour duration during that period
—Will need to be returned to Penny Anderson (Duncan Hall 3080) by

4pm on Friday, February 28, 2014
– Exam can also be picked up from Penny Anderson starting 2pm

on Feb 26th if you’re unable to attend lecture.
—No lecture on Friday, Feb 28th

• Homework 3 is due by by 11:59pm on Wednesday, March 12, 2014
—Programming assignment is more challenging than in previous

homeworks --- start early!

COMP 322, Spring 2014 (V.Sarkar)

Scope of Midterm Exam
• Midterm exam will cover material from Lectures 1 - 17

—Lecture 18 (Feb 26th) will be a Midterm review

• Excerpts from midterm exam instructions
—“closed-book, closed-notes, closed-computer”
—“Record start time when you open the exam, and end time when you

finish. The total duration must be at most 2 hours. ”
—“Since this is a written exam and not a programming assignment,

syntactic errors in program text will not be penalized (e.g., missing
semicolons, incorrect spelling of keywords, etc) so long as the
meaning of your solution is unambiguous.”

—“If you believe there is any ambiguity or inconsistency in a question,
you should state the ambiguity or inconsistency that you see, as well
as any assumptions that you make to resolve it.”

41

