
COMP 322: Fundamentals of
Parallel Programming

Lecture 20: Speculative parallelization

of isolated constructs
Swarat Chaudhuri

Vivek Sarkar
Department of Computer Science, Rice University

{swarat,vsarkar}@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 20 12 March 2014

2 COMP 322, Spring 2014 (V.Sarkar)

HJ isolated construct (Recap)!
isolated (() -> <body>);
•  Isolated construct identifies a critical section
•  Two tasks executing isolated constructs must perform them in

mutual exclusion
è Isolation guarantee applies to (isolated, isolated) pairs of constructs, not

to (isolated, non-isolated) pairs of constructs

•  Isolated constructs may be nested
—  An inner isolated construct is redundant

•  Blocking parallel constructs are forbidden inside isolated constructs
— Isolated constructs must not contain any parallel construct that performs

a blocking operation e.g., finish, future get, next
— Non-blocking async operations are permitted, but isolation guarantee

only applies to creation of async, not to its execution

•  Isolated constructs can never cause a deadlock
—  Other techniques used to enforce mutual exclusion (e.g., locks) can lead

to a deadlock, if used incorrectly

3 COMP 322, Spring 2014 (V.Sarkar)

Implementations of isolated construct!
•  isolated constructs are convenient for the programmer but pose

significant challenges for the language implementation
— Implementation does not know ahead of time if two parallel instances

of isolated constructs will perform conflicting accesses on a shared
location

•  Naive implementation: allocated a single “lock”
— Only one async can enter an isolated construct at a time
— No differentiation between isolated and object-based isolated

•  HJ-lib implementation: allocate a set of “locks”
— Use hashcode to map from objects to locks

— Global isolated construct waits to acquire all locks
— Object-based isolated construct only acquires locks corresponding to

the objects in its list

•  How can we do better?

4 COMP 322, Spring 2014 (V.Sarkar)

•  Execution of an isolated construct is treated as a transaction
— In database systems, a transaction refers to a “unit of work” that has “all-

or-nothing” semantics. Each unit of work must either complete in its
entirety or have no visible effect.

•  A TM system optimistically permits transactions to run in parallel,
speculating that there won’t be any conflicts

•  At the end of a transaction, a TM system checks if a conflict occurred
with another transaction
— If not, the transaction can be committed
— If so, the transaction fails (aborts) and has to be “retried”

•  Both software and hardware implementations of TM have been explored
extensively by the research community, but no implementation has
achieved mainstream success as yet.

Research Idea 1: Transactional Memory !

Transactional Memory Scenario!

caches

memory

active

active write aborted

5 COMP 322, Spring 2014 (V.Sarkar). Original slide by Herlihy and Shavit

Irregular parallelism: Delaunay Mesh
Refinement (DMR)!

•  Input: a 2d triangle mesh that
satisfies:
 the Delaunay property: no point is
contained in the circumcircle of a triangle

•  Output: a 2d triangle mesh that
— satisfies the Delaunay property
— contains all points in the original mesh
— satisfies an extra quality constraint

–  no triangle can have an angle < 25°

•  Algorithm (Ruppert’s algorithm)
— iteratively select a triangle that violates
the quality constraint and refine the mesh
around it.

6 COMP 322, Spring 2014 (V.Sarkar)

DMR Algorithm  
(Sequential and HJ pseudocode)!

Mesh m = /* read input mesh */
Worklist wl = new worklist(m.getBad());
foreach triangle t in wl {
 if (t in m) {
 Cavity c = new Cavity(t)

 c.expand()
 c.retriangulate(m)
 wl.add(c.getBad()); } }

...
finish foreach triangle t in wl {
 async isolated {
 if (t in m) {
 Cavity c = new Cavity(t);

 c.expand();
 c.retriangulate(m);
 wl.add(c.getBad());}

 }}

Sequential version

Parallel version
with isolated
construct

7 COMP 322, Spring 2014 (V.Sarkar)

Another example: Boruvka’s Minimum
Spanning Tree (MST) algorithm!

Graph g = ...  
Forest mst = g.getNodes();  
Workset ws = g.getNodes();  
finish foreach Node n in ws "
 async isolated {  
 Node m = minWeight(n, g.getOutEdges(n));  
 Node l = edgeContract(n, m);  
 mst.addEdge(n, m);  
 ws.add(l);  
 }"

Before
contraction

After
contraction

8 COMP 322, Spring 2014 (V.Sarkar)

9 COMP 322, Spring 2014 (V.Sarkar)

Research Idea 2: Delegated Isolation!

•  Challenge: scalable implementation of isolated without using a single
global lock and without incurring transactional memory overheads

•  Delegated isolation:
— Restrict attention to “async isolated” case

–  replace non-async “isolated” by “finish async isolated”
— Task dynamically acquires ownership of each object accessed in

isolated block (optimistic parallelism)
— On conflict, task A transfers all ownerships to worker executing

conflicting task B and delegates execution of isolated block to B
 (Chorus execution model)

— Deadlock-freedom and livelock-freedom guarantees

— References:
–  “Delegated Isolation”, R. Lublinerman, J. Zhao, Z. Budimlic, S.

Chaudhuri, V. Sarkar, OOPSLA 2011
–  “Isolation for Nested Task Parallelism” J. Zhao, R. Lublinerman,

Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2013.

The Aida execution model!
Heap =

directed graph

Nodes =
memory locations

Labeled edges =
pointers

Regions =
subgraphs induced by a
partitioning

Assembly =
task + owned region

async isolated {
 …
}

An assembly can only access
objects that it owns

10 COMP 322, Spring 2014 (V.Sarkar)

 Conflict management: merging!
•  Assembly i merges with

assembly j along an edge f

•  Delegation:
— j keeps local state
— i dies passing closure to j.

Effects of i rolled back

•  Alternative: preemption (i
keeps local state,j gets
killed. More difficult to
implement.

•  Guarantees aside from
isolation:
— Deadlock-freedom
— Progress: For each conflict,

at least one commit

f i j

DMR Algorithm (Delegated isolation)!

processTriangle (Triangle t) {
 async isolated {
 if (t in m) {
 Cavity c = new Cavity(t);

 c.expand();
 c.retriangulate();
 for (s in c.badTriangles());

 processTriangle (s); } } }

main () {
 finish {
 for (t in initial set of bad triangles)
 processTriangle (t);
 }
}

13 COMP 322, Spring 2014 (V.Sarkar)

Delauney Mesh Refinement in Habanero-Java  
using Delegated Isolation!

Figure source:
http://lcpc10.rice.edu/Keynote_Speakers_files/PingaliKeynote.pdf

Boruvka’s MST algorithm!

processTree (Node n) {  
async isolated {  
 Node m = minWeight(n, g.getOutEdges(n));  
 Node l = edgeContract(n, m);  
 l.mst.addEdge(n, m);  
 processTree(l); }"

main () {
finish {
 for nodes n
 processTree(n); } }

"
14 COMP 322, Spring 2014 (V.Sarkar)

15 COMP 322, Spring 2014 (V.Sarkar)

Performance: DMR benchmark on 16-core Xeon SMP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)

















        



















 

16 COMP 322, Spring 2014 (V.Sarkar)

Three cases of contention among
isolated constructs!

1.  Low contention: when isolated constructs are executed infrequently
—  A single-lock approach as in HJ is often the best solution. No visible

benefit from other techniques because they incur overhead that is not
needed since contention is low.

2.  Moderate contention: when the serialization of all isolated constructs
in a single-lock approach limits the performance of the parallel
program due to Amdahl’s Law, but a finer-grained approach that only
serializes conflicting isolated constructs results in good scalability

—  Object-based isolation and “atomic variables” usually do well in this
scenario since the benefit obtained from reduced serialization far
outweighs any extra overhead incurred.

3.  High contention: when conflicting isolated constructs dominate the
program execution time in certain phases

—  Best approach in such cases is to find an alternative approach or algorithm
to using isolated e.g., use of accumulators or parallel prefix sum algorithm
for reductions

17

Worksheet #20:  
Identifying conflicts in isolated constructs!

Name: ___________________ Netid: ___________________

Consider the Parallel Spanning Tree algorithm discussed in the last
lecture (and shown below in slide 18). Assume that the isolated
construct is implemented using a Transactional Memory mechanism.
Outline a parallel execution scenario for the input graph below that
could lead to a conflict between isolated constructs.

A B

C D

Parallel Spanning Tree Algorithm!
1.  class V {

2.  V [] neighbors; // adjacency list for input graph

3.  V parent; // output value of parent in spanning tree

4.  boolean tryLabeling(final V n) {

5.  return isolatedWithReturn(() -> {
6.  if (parent == null) parent = n;

7.  return parent == n; // return true if n became parent

8.  });

9.  } // tryLabeling

10.  void compute() {
11.  for (int i=0; i<neighbors.length; i++) {
12.  final V child = neighbors[i];
13.  if (child.tryLabeling(this))
14.  async(() -> { child.compute(); }); // escaping async
15.  }
16.  } // compute
17. } // class V
18. . . .
19. root.parent = root; // Use self-cycle to identify root
20.  finish(() -> { root.compute(); });
21. . . .

18

