
COMP 322: Fundamentals of
Parallel Programming

Lecture 25: Linearizability (contd),
Intro to Java Threads

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 25 24 March 2014

COMP 322, Spring 2014 (V.Sarkar)

Solution to Worksheet #24:
Linearizability of method calls on a concurrent object

2

Is this a linearizable execution for a FIFO queue, q?

No! q.enq(x) must precede q.enq(y) in all linear sequences of
method calls invoked on q. It is illegal for the q.deq() operation to
return y.

COMP 322, Spring 2014 (V.Sarkar)

Linearizability of Concurrent Objects
(Summary)

Concurrent object

• A concurrent object is an object that can correctly handle methods
invoked in parallel by different tasks or threads

—Examples: Concurrent Queue, AtomicInteger
Linearizability

• Assume that each method call takes effect “instantaneously” at
some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous points
that are consistent with a sequential execution in which methods
are executed at those points

– If there is a choice of points that is inconsistent with a sequential
execution that doesn’t matter, so long as we can identify one
choice of points that is consistent with a sequential execution

– Innocent until proven guilty!

• An object is linearizable if all its possible executions are
linearizable

3

COMP 322, Spring 2014 (V.Sarkar)

Why is Linearizability important?
• Linearizability is a correctness condition for concurrent objects

• For example, is the following implementation of
AtomicInteger.getAndIncrement() linearizable?

– Motivation: many processors provide hardware support for get()
and compareAndSet(), but not for getAndAdd()

1.public final int getAndIncrement() {
2. int current = get();
3. int next = current + 1;
4. while (true) {
5. if (compareAndSet(current, next))
6. // success!
7. return current;
8. }
9. }

4

COMP 322, Spring 2014 (V.Sarkar)

A Linearizable Implementation of
getAndIncrement()

1. public final int getAndIncrement() {
2. while (true) {
3. int current = get();
4. int next = current + 1;
5. if (compareAndSet(current, next))
6. // success!
7. return current;
8. }
9. }

5

time
getAndInc():0

 C&S = false return C&S = true

getAndInc():1

getAndInc():0 must
occur before

getAndInc():1 for
linearizability

COMP 322, Spring 2014 (V.Sarkar)6

Motivation for try-in-a-loop pattern
• Optimistic “nonblocking” synchronization
— Pro: Resilient to failure or delay of any thread attempting synchronization
— Con: “spin loop” may tie up a worker indefinitely

• Try-in-a-loop pattern for optimistic synchronization has the
following structure

LOOP {
1) Set-up (local operation invisible to other threads)
2) Instantaneous effect e.g., CompareAndSet
 a) If successful break out of loop
 b) If unsuccessful continue loop

 }

COMP 322, Spring 2014 (V.Sarkar)

Another example of non-blocking synchronization:
getAndAdd() as a generalization of getAndIncrement()

 /** Atomically adds delta to the current value.
1. *
2. * @param delta the value to add
3. * @return the previous value
4. */
5. public final int getAndAdd(int delta) {
6. for (;;) { // try
7. int current = get();
8. int next = current + delta;
9. if (compareAndSet(current, next))
10. // commit
11. return current;
12. }
13. }

• Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/
atomic/AtomicInteger.java

7

COMP 322, Spring 2014 (V.Sarkar)

Example 4: execution of a monitor-based
implementation of FIFO queue q (Recap)

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

8

COMP 322, Spring 2014 (V.Sarkar)

Computation Graph for previous execution
(Example 4)

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge
Serialization edge

Task B

Task A

9

Monitor-based execution encloses each method call in an
isolated statement, demarcated by isolated-begin (i-begin)
and isolated-end (i-end) nodes

COMP 322, Spring 2014 (V.Sarkar)

Creating a Reduced Computation Graph to model
Instantaneous Execution of Methods in a Concurrent Object

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Method q.enq(x)

Method q.enq(y) Method q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Computation Graph

Method-level Reduced Graph

10

Basic idea: replace method of
concurrent object by a single
node in reduced CG

COMP 322, Spring 2014 (V.Sarkar)

Relating Linearizability to the
Computation Graph model

• Given a reduced CG, a sufficient condition for
linearizability is that the reduced CG is acyclic as in the
previous example.

• This means that if the reduced CG is acyclic, then the
underlying execution must be linearizable.

• However, the converse is not necessarily true, as we
will see.
—We cannot use a cycle in the reduced CG as

evidence of non-linearizability

11

COMP 322, Spring 2014 (V.Sarkar)

Example 5: Example execution of method
calls on a concurrent FIFO queue q (Recap)
Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

12

COMP 322, Spring 2014 (V.Sarkar)

Computation Graph for previous execution
(Example 5)

i-begin isolated
work

i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

i-begin i-end

Computation Graph

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method-level Reduced Graph

13

non-
isolated
work

isolated
work

q.enq(x)

Note: calls to get() & compareAndSet() are examples of isolated work

COMP 322, Spring 2014 (V.Sarkar)

Reduced Computation Graph for previous execution
(Example 5)

• Example of linearizable execution graph for which reduced
method-level graph is cyclic

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

• Approach to make cycle test more precise for linearizability

• Decompose concurrent object method into a sequence of failed
“try” steps followed by a successful “commit” step (try-in-a-
loop pattern)

• Assume that each successful “commit” step’s execution does
not use any input from any prior failed “try” step

è Reduced graph can just reduce the “commit” step to a single
node instead of reducing the entire method to a single node

14

COMP 322, Spring 2014 (V.Sarkar)

Computation Graph for Example 5
decomposed into try & commit portions

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

i-begin i-end

Computation Graph

Method
q.enq(y)

Method
q.enq(x)
commit

Method
q.deq():x

Method-level Reduced Graph

15

i-begin isolated
work (try)

i-end

non-
isolated

work (try)

isolated
work

(commit)

q.enq(x)

Task A

Task ATask B Task B

COMP 322, Spring 2014 (V.Sarkar)

Introduction to Java threads:
java.lang.Thread class

• Execution of a Java program begins with an instance of Thread
created by the Java Virtual Machine (JVM) that executes the
program’s main() method.

• Parallelism can be introduced by creating additional instances of
class Thread that execute as parallel threads.

16

A lambda can be
passed as a Runnable

COMP 322, Spring 2014 (V.Sarkar)

HJ runtime uses Java threads as workers …

• HJ runtime creates a small number of worker threads, typically one per core

• Workers push async’s/continuations into a logical work queue

• when an async operation is performed

• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle

17

COMP 322, Spring 2014 (V.Sarkar)18

… because programming directly with Java threads
can be expensive

Fork-Join Microbenchmark Measurements
(execution time in micro-seconds from Lecture 10)

k ts(k) t1
ws(k) t1

jt(k)
1 0.00550 1.67180 0.00264
2 0.00640 1.61984 0.64944
4 0.00752 1.67401 1.26081
8 0.00962 1.68423 5.39852
16 0.01117 1.71121 7.49290
32 0.01341 2.04591 8.14587
64 0.01962 2.07918 11.07557
128 0.02337 2.07780 12.03547
256 0.05199 2.13682 17.67796
512 0.07282 2.29679 28.28268
1024 0.14978 2.63632 51.30504
2048 0.31606 2.99007 90.20563
4096 0.57622 3.61543 175.49042
8192 0.75838 8.55980 333.09688

16384 1.07625 9.50611 667.73758

COMP 322, Spring 2014 (V.Sarkar)

start() and join() methods
• A Thread instance starts executing when its start()

method is invoked
—start() can be invoked at most once per Thread instance

– Like actors, except that Java threads don’t process messages
—As with async, the parent thread can immediately move to the

next statement after invoking t.start()

• A t.join() call forces the invoking thread to wait till thread
t completes.
—Lower-level primitive than finish since it only waits for a single

thread rather than a collection of threads
—No restriction on which thread performs a join on which thread,

so it is possible to create a deadlock cycle using join()
– Declaring thread references as final does not help because

the new() and start() operations are separated for threads
(unlike futures, where they are integrated)

19

COMP 322, Spring 2014 (V.Sarkar)

Two-way Parallel Array Sum
using Java Threads

20

1. // Start of main thread

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. Thread t1 = new Thread(() -> {

4. // Child task computes sum of lower half of array

5. for(int i=0; i < X.length/2; i++) sum1 += X[i];

6. });

7. t1.start();

8. // Parent task computes sum of upper half of array

9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. // Parent task waits for child task to complete (join)

11. t1.join();

12. return sum1 + sum2;

COMP 322, Spring 2014 (V.Sarkar)

Two-way Parallel Array Sum
using HJ-Lib’s finish & async API’s

21

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. finish(() -> {

4. async(() -> {

5. // Child task computes sum of lower half of array

6. for(int i=0; i < X.length/2; i++) sum1 += X[i];

7. });

8. // Parent task computes sum of upper half of array

9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. });

11. // Parent task waits for child task to complete (join)

12. return sum1 + sum2;

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #25 (due by start of next lecture):
Linearizability of method calls on a concurrent object

22

Name: ___________________ Netid: ___________________

Can you show an execution for which deq() results in an EmptyException
in line 22 below? If so, that is a non-linearizable execution.

COMP 322, Spring 2014 (V.Sarkar)

One Possible Attempt to Implement
a Concurrent Queue

1. // Assume that no. of enq() operations is < Integer.MAX_VALUE
2. class Queue1 {
3. AtomicInteger head = new AtomicInteger(0);
4. AtomicInteger tail = new AtomicInteger(0);
5. Object[] items = new Object[Integer.MAX_VALUE];
6. public void enq(Object x) {
7. int slot = tail.getAndIncrement(); // isolated(tail) ...
8. items[slot] = x;
9. } // enq
10. public Object deq() throws EmptyException {
11. int slot = head.getAndIncrement(); // isolated(head) ...
12. Object value = items[slot];
13. if (value == null) throw new EmptyException();
14. return value;
15. } // deq
16. } // Queue1

17. // Client code
18. finish {
19. Queue1 q = new Queue1();
20. async q.enq(new Integer(1));
21. q.enq(newInteger(2));
22. Integer x = (Integer) q.deq();
23. }

23

