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Solution to Worksheet #24: 
Linearizability of method calls on a concurrent object
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Is this a linearizable execution for a FIFO queue, q?

No! q.enq(x) must precede q.enq(y) in all linear sequences of 
method calls invoked on q.  It is illegal for the q.deq() operation to 
return y.
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Linearizability of Concurrent Objects 
(Summary)

Concurrent object

• A concurrent object is an object that can correctly handle methods 
invoked in parallel by different tasks or threads

—Examples: Concurrent Queue, AtomicInteger
Linearizability

• Assume that each method call takes effect “instantaneously” at 
some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous points 
that are consistent with a sequential execution in which methods 
are executed at those points

– If there is a choice of points that is inconsistent with a sequential 
execution that doesn’t matter, so long as we can identify one 
choice of points that is consistent with a sequential execution 

– Innocent until proven guilty!

• An object is linearizable if all its possible executions are 
linearizable
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Why is Linearizability important?
• Linearizability is a correctness condition for concurrent objects

• For example, is the following implementation of 
AtomicInteger.getAndIncrement() linearizable?

– Motivation: many processors provide hardware support for get() 
and compareAndSet(), but not for getAndAdd()

1.public final int getAndIncrement() {
2.        int current = get();
3.        int next = current + 1;
4.        while (true) {
5.            if (compareAndSet(current, next))
6.                // success!
7.                return current;
8.        }
9.    }

4
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A Linearizable Implementation of 
getAndIncrement()

1.  public final int getAndIncrement() {
2.       while (true) {
3.            int current = get();
4.            int next = current + 1;
5.            if (compareAndSet(current, next))
6.                // success!
7.                return current;
8.        }
9.    }
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time
getAndInc():0

   C&S = false return   C&S = true

getAndInc():1

getAndInc():0 must 
occur before 

getAndInc():1 for 
linearizability
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Motivation for try-in-a-loop pattern
• Optimistic “nonblocking” synchronization
— Pro: Resilient to failure or delay of any thread attempting synchronization
— Con: “spin loop” may tie up a worker indefinitely

• Try-in-a-loop pattern for optimistic synchronization has the 
following structure

LOOP {
1) Set-up (local operation invisible to other threads)
2) Instantaneous effect e.g., CompareAndSet
    a) If successful break out of loop
    b) If unsuccessful continue loop

 }



COMP 322, Spring 2014 (V.Sarkar)

Another example of non-blocking synchronization: 
getAndAdd() as a generalization of getAndIncrement()

  /** Atomically adds delta to the current value.
1.     *
2.     * @param delta the value to add
3.     * @return the previous value
4.     */
5.    public final int getAndAdd(int delta) {
6.        for (;;) { // try
7.            int current = get();
8.            int next = current + delta;
9.            if (compareAndSet(current, next))
10.                // commit
11.                return current;
12.        }
13.    }

• Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/
atomic/AtomicInteger.java
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Example 4: execution of a monitor-based 
implementation of FIFO queue q (Recap)

Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Computation Graph for previous execution
(Example 4)

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge
Serialization edge

Task B

Task A
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Monitor-based execution encloses each method call in an 
isolated statement, demarcated by isolated-begin (i-begin) 
and isolated-end (i-end) nodes
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Creating a Reduced Computation Graph to model 
Instantaneous Execution of Methods in a Concurrent Object

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Method q.enq(x)

Method q.enq(y) Method q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Computation Graph

Method-level Reduced Graph

10

Basic idea: replace method of 
concurrent object by a single 
node in reduced CG 
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Relating Linearizability to the 
Computation Graph model

• Given a reduced CG, a sufficient condition for 
linearizability is that the reduced CG is acyclic as in the 
previous example. 

• This means that if the reduced CG is acyclic, then the 
underlying execution must be linearizable. 

• However, the converse is not necessarily true, as we 
will see.
—We cannot use a cycle in the reduced CG as 

evidence of non-linearizability
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Example 5: Example execution of method 
calls on a concurrent FIFO queue q (Recap)
Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Computation Graph for previous execution
(Example 5)

i-begin isolated
work

i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

i-begin i-end

Computation Graph

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method-level Reduced Graph
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non-
isolated
work

isolated
work

q.enq(x)

Note: calls to get() & compareAndSet() are examples of isolated work
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Reduced Computation Graph for previous execution
(Example 5)

• Example of linearizable execution graph for which reduced 
method-level graph is cyclic

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

• Approach to make cycle test more precise for linearizability

• Decompose concurrent object method into a sequence of failed 
“try” steps followed by a successful “commit” step (try-in-a-
loop pattern)

• Assume that each successful “commit” step’s execution does 
not use any input from any prior failed “try” step

è Reduced graph can just reduce the “commit” step to a single 
node instead of reducing the entire method to a single node 

14
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Computation Graph for Example 5 
decomposed into try & commit portions

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

i-begin i-end

Computation Graph

Method
q.enq(y)

Method
q.enq(x)
commit

Method
q.deq():x

Method-level Reduced Graph
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i-begin isolated
work (try)

i-end

non-
isolated

work (try)

isolated
work

(commit)

q.enq(x)

Task A

Task ATask B Task B
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Introduction to Java threads:
java.lang.Thread class

• Execution of a Java program begins with an instance of Thread 
created by the Java Virtual Machine (JVM) that executes the 
program’s main() method. 

• Parallelism can be introduced by creating additional instances of 
class Thread that execute as parallel threads. 

16

A lambda can be 
passed as a Runnable
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HJ runtime uses Java threads as workers …

• HJ runtime creates a small number of worker threads, typically one per core

• Workers push async’s/continuations into a logical work queue

• when an async operation is performed

• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle

17
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… because programming directly with Java threads 
can be expensive

Fork-Join Microbenchmark Measurements
(execution time in micro-seconds from Lecture 10)

k ts(k) t1
ws(k) t1

jt(k)
1 0.00550 1.67180 0.00264
2 0.00640 1.61984 0.64944
4 0.00752 1.67401 1.26081
8 0.00962 1.68423 5.39852
16 0.01117 1.71121 7.49290
32 0.01341 2.04591 8.14587
64 0.01962 2.07918 11.07557
128 0.02337 2.07780 12.03547
256 0.05199 2.13682 17.67796
512 0.07282 2.29679 28.28268
1024 0.14978 2.63632 51.30504
2048 0.31606 2.99007 90.20563
4096 0.57622 3.61543 175.49042
8192 0.75838 8.55980 333.09688

16384 1.07625 9.50611 667.73758
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start() and join() methods
• A Thread instance starts executing when its start() 

method is invoked
—start() can be invoked at most once per Thread instance

– Like actors, except that Java threads don’t process messages
—As with async, the parent thread can immediately move to the 

next statement after invoking t.start()

• A t.join() call forces the invoking thread to wait till thread 
t completes. 
—Lower-level primitive than finish since it only waits for a single 

thread rather than a collection of threads
—No restriction on which thread performs a join on which thread, 

so it is possible to create a deadlock cycle using join()
– Declaring thread references as final does not help because 

the new() and start() operations are separated for threads 
(unlike futures, where they are integrated)

19
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Two-way Parallel Array Sum 
using Java Threads

20

1.  // Start of main thread

2.  sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3.  Thread t1 = new Thread(() -> {

4.      // Child task computes sum of lower half of array

5.      for(int i=0; i < X.length/2; i++) sum1 += X[i]; 

6.    }); 

7.  t1.start();

8.  // Parent task computes sum of upper half of array

9.  for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. // Parent task waits for child task to complete (join)

11. t1.join();

12. return sum1 + sum2;  
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Two-way Parallel Array Sum 
using HJ-Lib’s finish & async API’s

21

1.  // Start of Task T0 (main program)

2.  sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3.  finish(() -> {

4.    async(() -> {

5.      // Child task computes sum of lower half of array

6.      for(int i=0; i < X.length/2; i++) sum1 += X[i]; 

7.    });  

8.    // Parent task computes sum of upper half of array

9.    for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

10. });

11. // Parent task waits for child task to complete (join)

12. return sum1 + sum2;  
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Worksheet #25 (due by start of next lecture): 
Linearizability of method calls on a concurrent object

22

Name: ___________________          Netid: ___________________

Can you show an execution for which deq() results in an EmptyException 
in line 22 below? If so, that is a non-linearizable execution.
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One Possible Attempt to Implement
a Concurrent Queue

1.  // Assume that no. of enq() operations is < Integer.MAX_VALUE
2.  class Queue1 {
3.    AtomicInteger head = new AtomicInteger(0);
4.    AtomicInteger tail = new AtomicInteger(0); 
5.    Object[] items = new Object[Integer.MAX_VALUE]; 
6.    public void enq(Object x) {
7.      int slot = tail.getAndIncrement(); // isolated(tail) ...
8.     items[slot] = x;
9.   } // enq
10.   public Object deq() throws EmptyException {
11.     int slot = head.getAndIncrement(); // isolated(head) ...
12.     Object value = items[slot];
13.     if (value == null) throw new EmptyException();
14.     return value;
15.   } // deq
16. } // Queue1

17. // Client code
18. finish {
19.   Queue1 q = new Queue1();
20.   async q.enq(new Integer(1));
21.   q.enq(newInteger(2));
22.   Integer x = (Integer) q.deq();
23. }
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