
COMP 322: Fundamentals of
Parallel Programming

Lecture 27: InterruptedException,
Advanced Locking

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 27 28 March 2014

COMP 322, Spring 2014 (V.Sarkar)

Solution to Worksheet #26: Java Threads
1) Write a sketch of the pseudocode for a Java threads program that
exhibits a data race using start() and join() operations.

1. // Start of thread t0 (main program)
2. sum1 = 0; sum2 = 0; // Assume that sum1 & sum2 are fields
3. // Compute sum1 (lower half) and sum2 (upper half) in parallel
4. final int len = X.length;
5. Thread t1 = new Thread(() -> {
6. for(int i=0 ; i < len/2 ; i++) sum1+=X[i];});
7. t1.start();
8. Thread t2 = new Thread(() -> {
9. for(int i=len/2 ; i < len ; i++) sum2+=X[i];});
10. t2.start();
11. int sum = sum1 + sum2; // data race between t0 & t1, and t0 & t2
12. t1.join(); t2.join();

2

COMP 322, Spring 2014 (V.Sarkar)

Solution to Worksheet #26: Java Threads
(contd)

2) Write a sketch of the pseudocode for a Java threads program that
exhibits a data race using synchronized statements.

1. // Start of thread t0 (main program)
2. sum = 0; // static int field
3. Object a = new ... ;
4. Object b = new ... ;
5. Thread t1 = new Thread(() -> { synchronized(a) { sum++; } });
6. Thread t2 = new Thread(() -> { synchronized(b) { sum++; } });
1. t1.start();
7. t2.start(); // data race between t1 & t2
8. t1.join(); t2.join();

3

COMP 322, Spring 2014 (V.Sarkar)

Objects and Locks in Java ---
synchronized statements and methods (Recap)

• Every Java object has an associated lock acquired via:
— synchronized statements

– synchronized(foo) { // acquire lock on object foo
 // execute code while holding foo’s lock
} // release lock on object foo

— synchronized methods
– public synchronized void op1() { // acquire lock on “this” object

 // execute method while holding ‘this’ lock
} // release lock on “this” object

• Java language does not enforce any relationship between object used for locking
and objects accessed in isolated code
— If same object is used for locking and data access, then the object behaves

like a monitor

• Locking and unlocking are automatic
— Locks are released when a synchronized block exits

• By normal means: end of block reached, return, break

• When an exception is thrown and not caught

4

COMP 322, Spring 2014 (V.Sarkar)

Use of class objects in synchronized
statements/methods

• A class object exists for every class
• static synchronized methods lock the class object
• class object can be locked explicitly:

– synchronized(Foo.class) { /* ... */ }

• No connection between locking the Class object and locking an
instance of the class
—Locking the Class object does not lock any instance
—Instance methods that use static variables must synchronize access

to them explicitly by locking the Class object
Always use the class literal to get reference to Class object—

not this.getClass() as you may access a subclass object

5

COMP 322, Spring 2014 (V.Sarkar)

Cancelling Threads: Interruption

• Problem: how do we shut down a thread like a web server?

• Need to communicate that shutdown has been requested
—Could set a flag that is polled in the main loop

But main loop could be blocked waiting for a request

• Interruption provides a means of signalling a request to another
thread

• Each Thread has an “interrupted status” which is
—Set when interrupt() method is invoked on it
—Queried by isInterrupted() method

• Many blocking methods respect interruption requests and return
early by throwing checked InterruptedException
— Object.wait()

—Throwing IE usually clears interrupted status

6

COMP 322, Spring 2014 (V.Sarkar)

Calling methods that may throw
InterruptedException

• Many methods in Java thread libraries may throw an
InterruptedException e.g., <thread>.join(), <object>.wait(),

• When calling any such method, you will either need to include each
call to join() in a try-catch block, or add a “throws
InterruptedException” clause to the definition of the method that
includes the call to join()

• Try-catch code for InterruptedException in Bounded Buffer example:

 while (count == BUFFER SIZE) {
 try {
 wait();
 }
 catch (InterruptedException e) { }
 }

7

COMP 322, Spring 2014 (V.Sarkar)

Responses to Interruption

• Re-throw IE
—So caller can handle interruption request

• Cancel and return early
—Clean up and exit without signalling an error
—May require rollback or recovery

• Ignore interruption
—When it is too dangerous to stop
—Should re-assert interrupted status before returning

• Postpone interruption
—Remember that interrupt occurred
—Finish what you are doing and then throw IE

• Throw a general failure exception
—When interruption is one of many reasons method can fail

8

COMP 322, Spring 2014 (V.Sarkar)

Example: Shutting Down the Web Server
1. public class WebServerWithShutdown {
2. private final ServerSocket server;
3. private Thread serverThread;
4. public WebServerWithShutdown(int port) throws IOException {
5. server = new ServerSocket(port);
6. server.setSoTimeout(5000); // so we can check for interruption
7. }
8. public synchronized void shutdownServer() throws IE..,IOException {
9. if (serverThread == null) throw new IllegalStateException();
10. serverThread.interrupt();
11. serverThread.join(5000); // wait 5s before closing socket
12. server.close(); // to give thread a chance to cleanup
13. }
14. public synchronized void startServer() {
15. if (serverThread == null) {
16. (serverThread = new Thread() {
17. public void run() {
18. while (!Thread.interrupted()) {
19. try { processRequest(server.accept()); }
20. catch (SocketTimeoutException e) { continue; }
21. catch (IOException ex) { /* log it */ }
22. }
23. }
24. }).start();
25. }
26. }
27. }

Note: shutdownServer can be
harmlessly called more than once

9

COMP 322, Spring 2014 (V.Sarkar)

Locks and Conditions
in java.util.concurrent library

• Atomic variables
—The key to writing lock-free algorithms

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

10

COMP 322, Spring 2014 (V.Sarkar)

Locks

Example of hand-over-hand locking:
• L1.lock() … L2.lock() … L1.unlock() … L3.lock() … L2.unlock() ….

11

COMP 322, Spring 2014 (V.Sarkar)

java.util.concurrent.locks.Lock interface
 interface Lock {

 void lock();

 void lockInterruptibly() throws InterruptedException;

 boolean tryLock(); // return false if lock is not obtained

 boolean tryLock(long timeout, TimeUnit unit)

 throws InterruptedException;

 void unlock();

 Condition newCondition();

 // can associate multiple condition vars with lock

}

• java.util.concurrent.locks.Lock interface is implemented by
java.util.concurrent.locks.ReentrantLock class

12

COMP 322, Spring 2014 (V.Sarkar)

Simple ReentrantLock() example

13

COMP 322, Spring 2014 (V.Sarkar)

java.util.concurrent.locks.condition interface

• Can be allocated by calling ReentrantLock.newCondition()

• Supports multiple condition variables per lock

• Methods supported by an instance of condition
—void await() // NOTE: not wait

– Causes current thread to wait until it is signaled or interrupted
– Variants available with support for interruption and timeout

—void signal() // NOTE: not notify
– Wakes up one thread waiting on this condition

—void signalAll() // NOTE: not notifyAll()
– Wakes up all threads waiting on this condition

• For additional details see
—http://download.oracle.com/javase/1.5.0/docs/api/java/util/

concurrent/locks/Condition.html
14

COMP 322, Spring 2014 (V.Sarkar)

BoundedBuffer implementation using
two conditions, notFull and notEmpty

1. class BoundedBuffer {

2. final Lock lock = new ReentrantLock();

3. final Condition notFull = lock.newCondition();

4. final Condition notEmpty = lock.newCondition();

6. final Object[] items = new Object[100];

7. int putptr, takeptr, count;

8.

9. . . .

15

COMP 322, Spring 2014 (V.Sarkar)

BoundedBuffer implementation using two
conditions, notFull and notEmpty (contd)

10. public void put(Object x) throws InterruptedException

11. {

12. lock.lock();

13. try {

14. while (count == items.length) notFull.await();

15. items[putptr] = x;

16. if (++putptr == items.length) putptr = 0;

17. ++count;

18. notEmpty.signal();

19. } finally {

20. lock.unlock();

21. }

22. }

16

COMP 322, Spring 2014 (V.Sarkar)

BoundedBuffer implementation using two
conditions, notFull and notEmpty (contd)
23. public Object take() throws InterruptedException

24. {

25. lock.lock();

26. try {

27. while (count == 0) notEmpty.await();

28. Object x = items[takeptr];

29. if (++takeptr == items.length) takeptr = 0;

30. --count;

31. notFull.signal();

32. return x;

33. } finally {

34. lock.unlock();

35. }

36. }

17

COMP 322, Spring 2014 (V.Sarkar)

Reading vs. writing
• Recall that the use of synchronization is to protect interfering accesses

— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:
— If concurrent write/write or read/write might occur, use synchronization to

ensure one-thread-at-a-time

But:
— This is unnecessarily conservative: we could still allow multiple simultaneous

readers

Consider a hashtable with one coarse-grained lock
— So only one thread can perform operations at a time

But suppose:
— There are many simultaneous lookup operations
— insert operations are very rare

18

COMP 322, Spring 2014 (V.Sarkar)

java.util.concurrent.locks.ReadWriteLock
interface

 interface ReadWriteLock {

 Lock readLock();

 Lock writeLock();

 }

• Even though the interface appears to just define a pair of locks,
the semantics of the pair of locks is coupled as follows
—Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()
—Case 2: no thread has acquired writeLock().lock()

– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented
by java.util.concurrent.locks.ReadWriteReentrantLock class

19

COMP 322, Spring 2014 (V.Sarkar)

Example code
class Hashtable<K,V> {
 …
 // coarse-grained, one lock for table
 ReadWriteLock lk = new ReentrantReadWriteLock();
 V lookup(K key) {
 int bucket = hasher(key);
 lk.readLock().lock(); // only blocks writers
 … read array[bucket] …
 lk.readLock().unlock();
 }
 void insert(K key, V val) {
 int bucket = hasher(key);
 lk.writeLock().lock(); // blocks readers and writers
" … write array[bucket] …
 lk.writeLock().unlock();
 }
}

20

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #27: use of tryLock()

Extend the transferFunds() method from Lecture 26 (shown below) to use
j.u.c. locks with tryLock() instead of synchronized, and to return a boolean
value --- true if it succeeds in obtaining in obtaining both locks and
performing the transfer, and false otherwise. Assume that each Account
object contains a reference to a dedicated ReentrantLock object. Sketch
your answer below using pseudocode. Can you create a deadlock with
multiple calls to transferFunds() in parallel?

1. public void transferFunds(Account from, Account to, int amount)
{

2. synchronized (from) {
3. synchronized (to) {
4. from.subtractFromBalance(amount);
5. to.addToBalance(amount);
6. }
7. }
8. }

21

Name: ___________________ Netid: ___________________

