COMP 322: Fundamentals of
Parallel Programming

Lecture 29: Java Synchronizers,
Dining Philosophers Problem

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 29 2 April 2014

Worksheet #28:
Liveness Guarantees

/** Atomically adds delta to the current value.

1. *

2. * @param delta the value to add

3. * @return the previous value

4. * /

5. public final int getAndAdd(int delta) {
6. for (;7) A

7. int current = get();

8. int next = current + delta;

9. if (compareAndSet(current, next))
10. // commit

11. return current;

12. }

13 }

Assume that multiple tasks call getAndAdd() repeatedly in parallel. Can this
implementation of getAndAdd() lead to executions with a) deadlock, b) livelock,
c) starvation, or d) bounded wait? Write and explain your answer below.

c) starvation and d) bounded wait are both possible
NOTE: a terminating parallel program execution exhibits none of a), b), or c).

»’)
2 COMP 322, Spring 2014 (V.Sarkar) 2

Starvation vs. Bounded Wait

e Starvation: A parallel program execution exhibits
starvation if some task is repeatedly denied the
opportunity to make progress

e Bounded Wait: A parallel program execution exhibits
bounded wait if each task requesting a resource should
only have to wait for a bounded number of other tasks to
“cut in line” i.e., to gain access to the resource after its
request has been registered.

= Unbounded Wait is the same as Starvation, in practice

e Many implementations of critical sections exhibit
Starvation

3 COMP 322, Spring 2014 (V.Sarkar) &

Outline

Java Synchronizers

Dining Philosophers Problem

COMP 322, Spring 2014 (V.Sarkar)

Key Functional Groups in
java.util.concurrent

e Atomic variables
—The key to writing lock-free algorithms

e Concurrent Collections:

—Queues, blocking queues, concurrent hash map, ...
—Data structures designed for concurrent environments

e Locks and Conditions

—NMore flexible synchronization control
—Read/write locks

e Executors, Thread pools and Futures
—EXxecution frameworks for asynchronous tasking

e Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

5 COMP 322, Spring 2014 (V.Sarkar) %‘}

j-u.c Synchronizers --- common patterns
in HJ’s phaser construct

e Class library includes several state-dependent synchronizer
classes

— CountDownLatch — waits until latch reaches terminal state

— Semaphore — waits until permit is available

— CyclicBarrier — waits until N threads rendezvous

— Phaser — extension of CyclicBarrier with dynamic parallelism
— Exchanger — waits until 2 threads rendezvous

— FutureTask — waits until a computation has completed

e These typically have three main groups of methods
—NMethods that block until the object has reached the right state
Timed versions will fail if the timeout expired
Many versions can be cancelled via interruption
—Polling methods that allow non-blocking interactions
—State change methods that may release a blocked method

6 COMP 322, Spring 2014 (V.Sarkar) 2

CountDownLatch

* A counter that releases waiting threads when it reaches zero
—Allows one or more threads to wait for one or more events
—Initial value of 1 gives a simple gate or latch

CountDownLatch (int initialValue)

* await: wait (if needed) until the counter is zero

—Timeout version returns false on timeout

e countDown: decrement the counterif >0
e Query: getCount ()

* Very simple but widely useful:

—Replaces error-prone constructions ensuring that a group
of threads all wait for a common signal

7 COMP 322, Spring 2014 (V.Sarkar) <

Example: using j.u.c.CountDownLatch to
implement finish

* Problem: Run N tasks concurrently in N threads and wait until all are complete
— Use a CountDownLatch initialized to the number of threads

1. public static void runTask (int numThreads, final Runnable task)

2. throws InterruptedException {

3. final CountDownLatch done = new CountDownLatch (numThreads) ;

4. for (int i=0; i<numThreads; i++) {

5. Thread t = new Thread() { “\
6. public void run() f Old-fashioned

. tey | - way of specifying
5. caskmun) lambdas in Javal
9.) -

10. finally { done.countDown () ;}

11. }}s

12. t.start();

13. }

14. done.await () ; // wait for all threads to finish

15. }

8 COMP 322, Spring 2014 (V.Sarkar) <

Semaphores

e Conceptually serve as “permit” holders
—Construct with an initial number of permits
— acquire: waits for permit to be available, then “takes” one
— release: “returns” a permit
—But no actual permits change hands
The semaphore just maintains the current count
No need to acquire a permit before you release it

o “fair” variant hands out permits in FIFO order

e Supports balking and timed versions of acquire

e Applications:
—Resource controllers
—Designs that otherwise encounter missed signals
Semaphores ‘remember’ how often they were signalled

9 COMP 322, Spring 2014 (V.Sarkar) 2

Bounded Blocking Concurrent List
Example

e Concurrent list with fixed capacity
—Insertion blocks until space is available

e Tracking free space, or available items, can be done using a
Semaphore

e Demonstrates composition of data structures with library
synchronizers

—Easier than modifying implementation of concurrent list directly

10 COMP 322, Spring 2014 (V.Sarkar)

Bounded Blocking Concurrent List

1. public class BoundedBlockingList {

2. final int capacity;

3. final ConcurrentlinkedList list = new ConcurrentLinkedList () ;
4. final Semaphore sem;

5. public BoundedBlockingList (int capacity) {

6. this.capacity = capacity;

7. sem = new Semaphore (capacity) ;

8. 1}

9. public void addFirst(Object x) throws InterruptedException {
10. sem.acquire() ;

1. try { list.addFirst(x); }

12. catch (Throwable t){ sem.release(); rethrow(t); }

13. 1}

14. public boolean remove (Object x) {

15. if (list.remove(x)) { sem.release(); return true; }

16. return false;

17. }

18. .. } // BoundedBlockingList

11 COMP 322, Spring 2014 (V.Sarkar) D

O

Summary of j.u.c. libraries

e Atomics: java.util.concurrent.atomic e Executors
. _ Executors
— Atomic[Type] — ExecutorService
— Atomic[Type]Array — ScheduledExecutorService 3r€ the
— Atomic[Type]FieldUpdater — Callable only class
— Atomic{Markable,Stampable} — Future that we
Conci?::;ingzllections — ScheduledFuture haven’t
— ConcurrentMa — Delayed studied as
P — CompletionService
— ConcurrentHashMap — ThreadPoolExecutor yet

— CopyOnWriteArray{List,Set}

e Locks: java.util.concurrent.locks
— Lock

— ScheduledThreadPoolExecutor
— AbstractExecutorService

— FutureTask
— Condition — ExecutorCompletionService
— ReadWriteLock e Synchronizers
— AbstractQueuedSynchronizer — CountDownLatch
— LockSupport — Semaphore
— ReentrantLock — Exchanger

— ReentrantReadWriteLock _ cvclicBarrier

12 COMP 322, Spring 2014 (V.Sarkar) D

Outline

e Java Synchronizers

¢ Dining Philosophers Problem
—Acknowledgments
— CMSC 330 course notes, U. Maryland

http://www.cs.umd.edu/~lam/cmsc330/summer2008/lectures/
class20-threads_classicprobs.ppt

— Dave Johnson (COMP 421 instructor)

13 COMP 322, Spring 2014 (V.Sarkar) 2

The Dining Philosophers Problem

Constraints

* Five philosophers either eat or
think

 They must have two forks to eat
(don’t ask why)

« Can only use forks on either side
of their plate

* No talking permitted
Goals

* Progress guarantees
 Deadlock freedom
» Livelock freedom
« Starvation freedom

 Bounded wait (includes all of the
above)

 Maximize concurrency when eating

p)
14 COMP 322, Spring 2014 (V.Sarkar) 2D

General Structure of Dining
Philosophers Problem: PseudoCode

1. int numPhilosophers = 5;

2. 1nt numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [O:numPhilosophers-1]) {

5. while(true) {

6. Think ;

7. Acquire forks;

8. // Left fork = fork[p]

9. // Right fork = fork[(p-1)%numForks]

10. Eat ;

11. } // while
12.} // forall

15 COMP 322, Spring 2014 (V.Sarkar) &,

Solution 1: using Java’s synchronized

statement
1. int numPhilosophers = 5;
2. 1nt numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0O:numPhilosophers-1]) {
5. while(true) {
6. Think ;
7. synchronized(fork[p])
8. synchronized(fork[(p-1)%numForks]) {
9. Eat ;
10. }
11. }

12. } // while
13.} // forall

16 COMP 322, Spring 2014 (V.Sarkar) &,

Solution 2: using Java’s Lock library

W 00O N OO U1 A W N B

.
k) o -

12.
13.
14.

. 1nt numPhilosophers = 5;

. 1nt numForks = numPhilosophers;

. Fork[] fork = ... ; // Initialize array of forks
. forall(point [p] : [O0:numPhilosophers-1]) {

while(true) {
Think ;
if (!fork[p].lock.tryLock()) continue;
1f (Ifork[(p-1)%numForks].lock.tryLock()) {
fork[p].Tlock.unLock(); continue;
}
Eat ;
fork[p].Tock.unTock() ;fork[(p-1)%numForks].lock.unlock();

} // while
} // forall

17

COMP 322, Spring 2014 (V.Sarkar) 2

Solution 3: using HJ’s isolated statement

1. int numPhilosophers = 5;

2. 1nt numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [O:numPhilosophers-1]) {

5. while(true) {

6. Think ;

7. 1solated {

8. Pick up left and right forks;

9. Eat ;

10. }

11. } // while
12.} // forall

18 COMP 322, Spring 2014 (V.Sarkar)

Solution 4: using HJ’s object-based
isolation

1. int numPhilosophers = 5;

2. 1nt numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [O:numPhilosophers-1]) {

5. while(true) {

6. Think ;

7. 1solated(fork[p], fork[(p-1)%numForks]) {

8. Eat ;

9. }

10. } // while
11.} // forall

19 COMP 322, Spring 2014 (V.Sarkar)

Solution 5: using Java’s Semaphores

O 00 N O U1l D W N B

R R R R
A W N R O -

15.

16

int numPhilosophers = 5;

int numForks = numPhilosophers;

Fork[] fork = ... ; // Initialize array of forks
Semaphore table = new Semaphore(4);

. for (i=0;i<numForks;i++) fork[i].sem = new Semaphore(l);
. forall(point [p] : [0:numPhilosophers-1]) {

while(true) {
Think ;
table.acquire(); // At most 4 philosophers at table
fork[p].sem.acquire(); // Acquire left fork
fork[(p-1)%numForks].sem.acquire(); // Acquire right fork
Eat ;
fork[p].sem.release(); fork[(p-1)%numForks].sem.release();
table.release();

} // while

.} // forall

20

COMP 322, Spring 2014 (V.Sarkar) 2

Worksheet #29: Characterizing Solutions to
the Dining Philosophers Problem

Name: Netid:

For the five solutions studied in today’s lecture, indicate in the table below
which of the following conditions are possible and why:

1. Deadlock: when all philosopher tasks are blocked (neither thinking nor
eating)

2. Livelock: when all philosopher tasks are executing but ALL philosophers are
starved (never get to eat)

3. Starvation: when one or more philosophers are starved (never get to eat)

4. Non-Concurrency: when more than one philosopher cannot eat at the same
time, even when resources are available

21 COMP 322, Spring 2014 (V.Sarkar) 2

Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Solution 2:

tryLock/
JXLock

Solution 3:
isolated

Solution 4:

object-based
isolation

Solution 5:
semaphores

22 COMP 322, Spring 2014 (V.Sarkar) %S

