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• “Parallel Architectures”, Calvin Lin
—Lectures 5 & 6, CS380P, Spring 2009, UT Austin
—http://www.cs.utexas.edu/users/lin/cs380p/schedule.html 

• Slides accompanying Chapter 6 of “Introduction to Parallel Computing”, 
2nd Edition, Ananth Grama, Anshul Gupta, George Karypis, and Vipin 
Kumar, Addison-Wesley, 2003 

— http://www-users.cs.umn.edu/~karypis/parbook/Lectures/AG/chap6_slides.pdf

• MPI slides from “High Performance Computing: Models, Methods and 
Means”, Thomas Sterling, CSC 7600, Spring 2009, LSU
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• mpiJava home page: http://www.hpjava.org/mpiJava.html
• MPI lectures given at Rice HPC Summer Institute 2009, Tim Warburton, 
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Worksheet #29: Characterizing Solutions to 
the Dining Philosophers Problem 

For the five solutions studied in Lecture #29, indicate in the table below 
which of the following conditions are possible and why:

1. Deadlock: when all philosopher tasks are blocked
2. Livelock: when all philosopher tasks are executing (i.e., no philosopher is 

blocked) but ALL philosophers are starved (never get to eat)
3. Starvation: when one or more philosophers are starved (never get to eat)
4. Non-Concurrency: when more than one philosopher cannot eat at the same 

time, even when resources are available i.e., not being used

NOTES: 
• Deadlock implies Starvation and Non-Concurrency
• Livelock implies Starvation and Non-Concurrency
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Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Yes
(100%)

No
(78%)

Yes
(78%)

Yes
(35%)

Solution 2: 
tryLock/
unLock

No
(93%)

Yes
(98%)

Yes
(89%)

Yes
(24%)

Solution 3:
isolated

No
(100%)

No
(96%)

Yes
(87%)

Yes
(94%)

Solution 4:
object-based 
isolation

No
(85%)

No
(91%)

Yes
(91%)

No
(87%)

Solution 5:
semaphores

No
(93%)

No
(93%)

No
(67%)

No
(63%)

Percentages show fractions 
of correct responses
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Organization of a Shared-Memory 
Multicore Symmetric Multiprocessor (SMP)

• Memory hierarchy for a single Intel Xeon Quad-core E5440 
HarperTown processor chip
—A SUG@R node contains TWO such chips, for a total of 8 cores

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core A

L3 unified cache

Main memory

Regs

L1 
d-cache

Core B

L1 
i-cache

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core C

Regs

L1 
d-cache

Core D

L1 
i-cache
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Cores communicate
by reading and writing
data in a “shared memory”
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Organization of a Distributed-Memory 
Multiprocessor

Figure (a)

• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)

• Processors P0 … Pm communicate via a dedicated high-performance 
interconnection network (e.g., Infiniband)
—Supports much lower latencies and higher bandwidth than standard TCP/

IP networks
Figure (b)

• Each processor node consists of a processor, memory, and a Network 
Interface Card (NIC) connected to a router node (R) in the interconnect           
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Processors communicate by sending messages via an interconnect
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Principles of 
Message-Passing Programming 

• The logical view of a machine supporting the message-passing 
paradigm consists of p processes, each with its own exclusive 
address space. 
1. Each data element must belong to one of the partitions of the space; 

hence, data must be explicitly partitioned and placed. 
2. All interactions (read-only or read/write) require cooperation of two 

processes - the process that has the data and the process that wants 
to access the data. 

• These two constraints, while onerous, make underlying costs very 
explicit to the programmer. 

• In this loosely synchronous model, processes synchronize 
infrequently to perform interactions. Between these interactions, 
they execute completely asynchronously. 

• Most message-passing programs are written using the single 
program multiple data (SPMD) model. 
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SPMD Pattern 
• SPMD: Single Program Multiple Data

• Run the same program on P processing elements (PEs)

• Use the “rank” … an ID ranging from 0 to (P-1) … to determine 
what computation is performed on what data by a given PE

• Different PEs can follow different paths through the same code 

• Convenient pattern for hardware platforms that are not amenable 
to efficient forms of dynamic task parallelism
—General-Purpose Graphics Processing Units (GPGPUs)
—Distributed-memory parallel machines

• Key design decisions --- how should data and computation be 
distributed across PEs?
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Data Distribution: Local View in 
Distributed-Memory Systems
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Using the Single Program Multiple Data 
(SPMD) model with a Local View

Processors must communicate via messages for non-local data accesses

• Similar to communication constraint for actors (except that we allow hybrid 
combinations of task parallelism and actor parallelism in HJ)
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MPI: The Message Passing Interface
• Sockets and Remote Method Invocation (RMI) are communication 

primitives used for distributed Java programs.
—Designed for standard TCP/IP networks rather than high-performance 

interconnects
• The Message Passing Interface (MPI) standard was designed to 

exploit high-performance interconnects
—MPI was standardized in the early 1990s by the MPI Forum—a substantial 

consortium of vendors and researchers
– http://www-unix.mcs.anl.gov/mpi 

—It is an API for communication between nodes of a distributed memory 
parallel computer

—The original standard defines bindings to C and Fortran (later C++)
– Java support is available from a research project, mpiJava, 

developed at Indiana University 10+ years ago
http://www.hpjava.org/mpiJava.html
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Features of MPI

• MPI is a platform for Single Program Multiple Data (SPMD) 
parallel computing on distributed memory architectures, with an 
API for sending and receiving messages

• It includes the abstraction of a “communicator”, which is like an 
N-way communication channel that connects a set of N 
cooperating processes (analogous to a phaser)

• It also includes explicit datatypes in the API, that are used to 
describe the contents of communication buffers.
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The Minimal Set of MPI Routines (mpiJava)

• MPI.Init(args)
—initialize MPI in each process

• MPI.Finalize()
—terminate MPI

• MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

• MPI.COMM_WORLD.Rank()
—rank of this process in COMM_WORLD communicator
• Note: 

—In this subset, processes act independently with no information 
communicated among the processes. 

—“embarrassingly parallel”, Cleve Moler.
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Our First MPI Program 
(mpiJava version)

1.import mpi.*;
2.class Hello {
3.    static public void main(String[] args) {
4.       // Init() be called before other MPI calls
5.       MPI.Init(args); /
6.       int npes = MPI.COMM_WORLD.Size() 
7.       int myrank = MPI.COMM_WORLD.Rank() ;
8.       System.out.println(”My process number is ” + myrank);
9.       MPI.Finalize(); // Shutdown and clean-up
10.    }
11.}

main() is enclosed in an 
implicit “forall” --- each 
process runs a separate 
instance of main() with 
“index variable” = myrank
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MPI Communicators
• Communicator is an internal object

—Communicator registration is like phaser registration, 
except that MPI does not support dynamic parallelism

• MPI programs are made up of communicating processes

• Each process has its own address space containing its 
own attributes such as rank, size (and argc, argv, etc.) 

• MPI provides functions to interact with it

• Default communicator is MPI.COMM_WORLD
—All processes are its members
—It has a size (the number of processes)
—Each process has a rank within it
—Can think of it as an ordered list of processes

• Additional communicator(s) can co-exist

• A process can belong to more than one communicator
• Within a communicator, each process has a unique rank

MPI.COMM_WORLD

0
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Adding Send() and Recv() to the Minimal Set 
of MPI Routines (mpiJava)

• MPI.Init(args)
—initialize MPI in each process

• MPI.Finalize()
—terminate MPI

• MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

• MPI.COMM_WORLD.Rank()
—rank of this process in COMM_WORLD communicator

• MPI.COMM_WORLD.Send()
—send message using COMM_WORLD communicator

• MPI.COMM_WORLD.Recv()
—receive message using COMM_WORLD communicator

Point-
to-
point 
commn
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MPI Blocking Point to Point 
Communication: Basic Idea 

• A very simple communication between two processes is:
—process zero sends ten doubles to process one

• In MPI this is a little more complicated than you might 
expect. 

• Process zero has to tell MPI:
—to send a message to process one
—that the message contains ten entries
—the entries of the message are of type double
—the message has to be tagged with a label (integer number)

• Process one has to tell MPI:
—to receive a message from process zero
—that the message contains ten entries
—the entries of the message are of type double 
—the label that process zero attached to the message
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mpiJava Class hierarchy

MPI

Group

Comm

Datatype

Status

Request

package mpi

Intracomm

Intercomm

Prequest

Cartcomm

Graphcomm
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mpiJava send and receive
• Send and receive members of Comm:
     void Send(Object buf, int offset, int count, Datatype type, int dst, int tag) ;

      Status Recv(Object buf, int offset, int count, Datatype type, int src, int tag) ;

• The arguments buf, offset, count, type describe the data buffer—
the storage of the data that is sent or received.  They will be 
discussed on the next slide.

• dst is the rank of the destination process relative to this 
communicator.  Similarly in Recv(), src is the rank of the source 
process.

• An arbitrarily chosen tag value can be used in Recv() to select 
between several incoming messages: the call will wait until a 
message sent with a matching tag value arrives.

• The Recv() method returns a Status value, discussed later.
• Both Send() and Recv() are blocking operations by default

—Analogous to a phaser next operation
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Example of Send and Recv
1.import mpi.*;
2. class myProg {
3.  public static void main( String[] args ) {

4.    int tag0 = 0; int tag1 = 1;
5.    MPI.Init( args );! !       // Start MPI computation

6.    if ( MPI.COMM_WORLD.rank() == 0 ) { // rank 0 = sender
7.      int loop[] = new int[1]; loop[0] = 3;
8.      MPI.COMM_WORLD.Send( "Hello World!", 0, 12, MPI.CHAR, 1, tag0 );

9.      MPI.COMM_WORLD.Send( loop, 0, 1, MPI.INT, 1, tag1 );
10.    } else {                            // rank 1 = receiver

11.      int loop[] = new int[1]; char msg[] = new char[12];
12.      MPI.COMM_WORLD.Recv( msg, 0, 12, MPI.CHAR, 0, tag0 );
13.      MPI.COMM_WORLD.Recv( loop, 0, 1, MPI.INT, 0, tag1 );

14.      for ( int i = 0; i < loop[0]; i++ ) System.out.println( msg );
15.    }

16.    MPI.Finalize( );! !       // Finish MPI computation
17.  }
18.}

Send() and Recv() calls are blocking operations by default
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Worksheet #30: MPI send and receive

1. int a[], b[];
2. ...
3. if (MPI.COMM_WORLD.rank() == 0) {
4.    MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
5.    MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
6. }
7. else {
8.    Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
9.    Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
10.   System.out.println(“a = “ + a + “ ; b = “ + b);
11.}
12. ...

In the space below, indicate what values you expect the print statement in 
line 10 to output, assuming that the program is executed with two MPI 
processes.
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