
COMP 322: Fundamentals of
Parallel Programming

Lecture 30: Introduction to Message Passing
Interface (MPI)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 30 7 April 2014

COMP 322, Spring 2014 (V.Sarkar)

Acknowledgments for Today’s Lecture
• “Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder

—Includes resources available at http://www.pearsonhighered.com/educator/
academic/product/0,3110,0321487907,00.html

• “Parallel Architectures”, Calvin Lin
—Lectures 5 & 6, CS380P, Spring 2009, UT Austin
—http://www.cs.utexas.edu/users/lin/cs380p/schedule.html

• Slides accompanying Chapter 6 of “Introduction to Parallel Computing”,
2nd Edition, Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar, Addison-Wesley, 2003

— http://www-users.cs.umn.edu/~karypis/parbook/Lectures/AG/chap6_slides.pdf

• MPI slides from “High Performance Computing: Models, Methods and
Means”, Thomas Sterling, CSC 7600, Spring 2009, LSU

— http://www.cct.lsu.edu/csc7600/coursemat/index.html

• mpiJava home page: http://www.hpjava.org/mpiJava.html
• MPI lectures given at Rice HPC Summer Institute 2009, Tim Warburton,

May 2009

2

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #29: Characterizing Solutions to
the Dining Philosophers Problem

For the five solutions studied in Lecture #29, indicate in the table below
which of the following conditions are possible and why:

1. Deadlock: when all philosopher tasks are blocked
2. Livelock: when all philosopher tasks are executing (i.e., no philosopher is

blocked) but ALL philosophers are starved (never get to eat)
3. Starvation: when one or more philosophers are starved (never get to eat)
4. Non-Concurrency: when more than one philosopher cannot eat at the same

time, even when resources are available i.e., not being used

NOTES:
• Deadlock implies Starvation and Non-Concurrency
• Livelock implies Starvation and Non-Concurrency

3

COMP 322, Spring 2014 (V.Sarkar)4

Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Yes
(100%)

No
(78%)

Yes
(78%)

Yes
(35%)

Solution 2:
tryLock/
unLock

No
(93%)

Yes
(98%)

Yes
(89%)

Yes
(24%)

Solution 3:
isolated

No
(100%)

No
(96%)

Yes
(87%)

Yes
(94%)

Solution 4:
object-based
isolation

No
(85%)

No
(91%)

Yes
(91%)

No
(87%)

Solution 5:
semaphores

No
(93%)

No
(93%)

No
(67%)

No
(63%)

Percentages show fractions
of correct responses

COMP 322, Spring 2014 (V.Sarkar)

Organization of a Shared-Memory
Multicore Symmetric Multiprocessor (SMP)

• Memory hierarchy for a single Intel Xeon Quad-core E5440
HarperTown processor chip
—A SUG@R node contains TWO such chips, for a total of 8 cores

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

5

Cores communicate
by reading and writing
data in a “shared memory”

COMP 322, Spring 2014 (V.Sarkar)

Organization of a Distributed-Memory
Multiprocessor

Figure (a)

• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)

• Processors P0 … Pm communicate via a dedicated high-performance
interconnection network (e.g., Infiniband)
—Supports much lower latencies and higher bandwidth than standard TCP/

IP networks
Figure (b)

• Each processor node consists of a processor, memory, and a Network
Interface Card (NIC) connected to a router node (R) in the interconnect

6

Processors communicate by sending messages via an interconnect

COMP 322, Spring 2014 (V.Sarkar)

Principles of
Message-Passing Programming

• The logical view of a machine supporting the message-passing
paradigm consists of p processes, each with its own exclusive
address space.
1. Each data element must belong to one of the partitions of the space;

hence, data must be explicitly partitioned and placed.
2. All interactions (read-only or read/write) require cooperation of two

processes - the process that has the data and the process that wants
to access the data.

• These two constraints, while onerous, make underlying costs very
explicit to the programmer.

• In this loosely synchronous model, processes synchronize
infrequently to perform interactions. Between these interactions,
they execute completely asynchronously.

• Most message-passing programs are written using the single
program multiple data (SPMD) model.

7

COMP 322, Spring 2014 (V.Sarkar)

SPMD Pattern
• SPMD: Single Program Multiple Data

• Run the same program on P processing elements (PEs)

• Use the “rank” … an ID ranging from 0 to (P-1) … to determine
what computation is performed on what data by a given PE

• Different PEs can follow different paths through the same code

• Convenient pattern for hardware platforms that are not amenable
to efficient forms of dynamic task parallelism
—General-Purpose Graphics Processing Units (GPGPUs)
—Distributed-memory parallel machines

• Key design decisions --- how should data and computation be
distributed across PEs?

8

COMP 322, Spring 2014 (V.Sarkar)

Data Distribution: Local View in
Distributed-Memory Systems

9

COMP 322, Spring 2014 (V.Sarkar)

Using the Single Program Multiple Data
(SPMD) model with a Local View

Processors must communicate via messages for non-local data accesses

• Similar to communication constraint for actors (except that we allow hybrid
combinations of task parallelism and actor parallelism in HJ)

10

COMP 322, Spring 2014 (V.Sarkar)

MPI: The Message Passing Interface
• Sockets and Remote Method Invocation (RMI) are communication

primitives used for distributed Java programs.
—Designed for standard TCP/IP networks rather than high-performance

interconnects
• The Message Passing Interface (MPI) standard was designed to

exploit high-performance interconnects
—MPI was standardized in the early 1990s by the MPI Forum—a substantial

consortium of vendors and researchers
– http://www-unix.mcs.anl.gov/mpi

—It is an API for communication between nodes of a distributed memory
parallel computer

—The original standard defines bindings to C and Fortran (later C++)
– Java support is available from a research project, mpiJava,

developed at Indiana University 10+ years ago
http://www.hpjava.org/mpiJava.html

11

COMP 322, Spring 2014 (V.Sarkar)

Features of MPI

• MPI is a platform for Single Program Multiple Data (SPMD)
parallel computing on distributed memory architectures, with an
API for sending and receiving messages

• It includes the abstraction of a “communicator”, which is like an
N-way communication channel that connects a set of N
cooperating processes (analogous to a phaser)

• It also includes explicit datatypes in the API, that are used to
describe the contents of communication buffers.

12

COMP 322, Spring 2014 (V.Sarkar)

The Minimal Set of MPI Routines (mpiJava)

• MPI.Init(args)
—initialize MPI in each process

• MPI.Finalize()
—terminate MPI

• MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

• MPI.COMM_WORLD.Rank()
—rank of this process in COMM_WORLD communicator
• Note:

—In this subset, processes act independently with no information
communicated among the processes.

—“embarrassingly parallel”, Cleve Moler.

13

COMP 322, Spring 2014 (V.Sarkar)

Our First MPI Program
(mpiJava version)

1.import mpi.*;
2.class Hello {
3. static public void main(String[] args) {
4. // Init() be called before other MPI calls
5. MPI.Init(args); /
6. int npes = MPI.COMM_WORLD.Size()
7. int myrank = MPI.COMM_WORLD.Rank() ;
8. System.out.println(”My process number is ” + myrank);
9. MPI.Finalize(); // Shutdown and clean-up
10. }
11.}

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
“index variable” = myrank

14

COMP 322, Spring 2014 (V.Sarkar)

MPI Communicators
• Communicator is an internal object

—Communicator registration is like phaser registration,
except that MPI does not support dynamic parallelism

• MPI programs are made up of communicating processes

• Each process has its own address space containing its
own attributes such as rank, size (and argc, argv, etc.)

• MPI provides functions to interact with it

• Default communicator is MPI.COMM_WORLD
—All processes are its members
—It has a size (the number of processes)
—Each process has a rank within it
—Can think of it as an ordered list of processes

• Additional communicator(s) can co-exist

• A process can belong to more than one communicator
• Within a communicator, each process has a unique rank

MPI.COMM_WORLD

0

12

5

3

4

6

7

15

COMP 322, Spring 2014 (V.Sarkar)

Adding Send() and Recv() to the Minimal Set
of MPI Routines (mpiJava)

• MPI.Init(args)
—initialize MPI in each process

• MPI.Finalize()
—terminate MPI

• MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

• MPI.COMM_WORLD.Rank()
—rank of this process in COMM_WORLD communicator

• MPI.COMM_WORLD.Send()
—send message using COMM_WORLD communicator

• MPI.COMM_WORLD.Recv()
—receive message using COMM_WORLD communicator

Point-
to-
point
commn

16

COMP 322, Spring 2014 (V.Sarkar)

MPI Blocking Point to Point
Communication: Basic Idea

• A very simple communication between two processes is:
—process zero sends ten doubles to process one

• In MPI this is a little more complicated than you might
expect.

• Process zero has to tell MPI:
—to send a message to process one
—that the message contains ten entries
—the entries of the message are of type double
—the message has to be tagged with a label (integer number)

• Process one has to tell MPI:
—to receive a message from process zero
—that the message contains ten entries
—the entries of the message are of type double
—the label that process zero attached to the message

17

COMP 322, Spring 2014 (V.Sarkar)

mpiJava Class hierarchy

MPI

Group

Comm

Datatype

Status

Request

package mpi

Intracomm

Intercomm

Prequest

Cartcomm

Graphcomm

18

COMP 322, Spring 2014 (V.Sarkar)

mpiJava send and receive
• Send and receive members of Comm:
 void Send(Object buf, int offset, int count, Datatype type, int dst, int tag) ;

 Status Recv(Object buf, int offset, int count, Datatype type, int src, int tag) ;

• The arguments buf, offset, count, type describe the data buffer—
the storage of the data that is sent or received. They will be
discussed on the next slide.

• dst is the rank of the destination process relative to this
communicator. Similarly in Recv(), src is the rank of the source
process.

• An arbitrarily chosen tag value can be used in Recv() to select
between several incoming messages: the call will wait until a
message sent with a matching tag value arrives.

• The Recv() method returns a Status value, discussed later.
• Both Send() and Recv() are blocking operations by default

—Analogous to a phaser next operation

19

COMP 322, Spring 2014 (V.Sarkar)

Example of Send and Recv
1.import mpi.*;
2. class myProg {
3. public static void main(String[] args) {

4. int tag0 = 0; int tag1 = 1;
5. MPI.Init(args);! ! // Start MPI computation

6. if (MPI.COMM_WORLD.rank() == 0) { // rank 0 = sender
7. int loop[] = new int[1]; loop[0] = 3;
8. MPI.COMM_WORLD.Send("Hello World!", 0, 12, MPI.CHAR, 1, tag0);

9. MPI.COMM_WORLD.Send(loop, 0, 1, MPI.INT, 1, tag1);
10. } else { // rank 1 = receiver

11. int loop[] = new int[1]; char msg[] = new char[12];
12. MPI.COMM_WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);
13. MPI.COMM_WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag1);

14. for (int i = 0; i < loop[0]; i++) System.out.println(msg);
15. }

16. MPI.Finalize();! ! // Finish MPI computation
17. }
18.}

Send() and Recv() calls are blocking operations by default

20

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #30: MPI send and receive

1. int a[], b[];
2. ...
3. if (MPI.COMM_WORLD.rank() == 0) {
4. MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
5. MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
6. }
7. else {
8. Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
9. Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
10. System.out.println(“a = “ + a + “ ; b = “ + b);
11.}
12. ...

In the space below, indicate what values you expect the print statement in
line 10 to output, assuming that the program is executed with two MPI
processes.
21

Name: ___________________ Netid: ___________________

