
COMP 322: Fundamentals of
Parallel Programming

Lecture 34: General-Purpose GPU (GPGPU)
Computing

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 34 16 April 2014

COMP 322, Spring 2013 (V. Sarkar)

Block Distribution (Recap)
• A block distribution splits a region into contiguous subregions,

one per place, while trying to keep the subregions as close to
equal in size as possible.

• Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

• Example: block distribution of [0:15] across 4 places

2

COMP 322, Spring 2013 (V. Sarkar)

Cyclic Distribution (Recap)
• A cyclic distribution “cycles” through places 0 … place.MAX

PLACES − 1 when spanning the input region
• Cyclic distributions can improve the performance of parallel loops

that exhibit load imbalance

• Example: cyclic distributions of [0:15] and [0:1,0:7] across 4
places

• Example: dist.factory.cyclic([0:7,0:1]) for 4 places

3

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #33 solution: impact of distribution on
parallel completion time (instead of locality)

1. public void sampleKernel(
2. int iterations, int numChunks, Dist d) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish(() -> {
5. forseq (0, numChunks - 1, (jj) -> {
6. asyncAt(dist.get(jj), () -> {
7. perf.doWork(jj);
8. // Assume that time to process chunk jj = jj units
9. });
10. });
11. });
12. double[] temp = myNew; myNew = myVal; myVal = temp;
13. } // for iter
14. } // sample kernel

•Assume an execution with n places, each place with one worker thread
•Will a block or cyclic distribution for d have a smaller abstract completion
time, assuming that all tasks on the same place are serialized?

Answer: Cyclic distribution because it leads to better load balance (locality
was not a consideration in this problem)

4

COMP 322, Spring 2013 (V. Sarkar)

Flynn’s Taxonomy for Parallel
Computers

Single Instruction Multiple Instructions
Single Data SISD MISD
Multiple Data SIMD MIMD

Single Instruction, Single Data stream (SISD)
A sequential computer which exploits no parallelism in either the instruction or data

streams. e.g., old single processor PC

Single Instruction, Multiple Data streams (SIMD)
A computer which exploits multiple data streams against a single instruction stream to
perform operations which may be naturally parallelized. e.g. graphics processing unit

Multiple Instruction, Single Data stream (MISD)
Multiple instructions operate on a single data stream. Uncommon architecture which is
generally used for fault tolerance. Heterogeneous systems operate on the same data
stream and must agree on the result. e.g. the Space Shuttle flight control computer.

Multiple Instruction, Multiple Data streams (MIMD)
Multiple autonomous processors simultaneously executing different instructions on
different data. e.g. a PC cluster memory space.

5

COMP 322, Spring 2014 (V.Sarkar)

Multicore Processors are examples of
MIMD systems

• Memory hierarchy for a single Intel Xeon Quad-core E5440
HarperTown processor chip
—A SUG@R node contains TWO such chips, for a total of 8 cores

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

6

COMP 322, Spring 2013 (V. Sarkar) 8

SIMD computers

• Definition: A single instruction
stream is applied to multiple
data elements.
• One program text
• One instruction counter
• Distinct data streams per

Processing Element (PE)

• Examples: Vector Processors,
GPUs

PE

PE

PE

PE

Source: Mattson and Keutzer, UCB
CS294

7

 “CPU-Style” Cores
The “CPU-Style” core is designed to make individual threads speedy.

Graphics adapted from presentations by Andreas Klöckner and Kayvon Fatahalian 8

Fetch/Decode

ALU (Execute)

Out-of-order control logic

Branch predictor logic

Memory pre fetch unit

Large data cache

Execution
contexts

“Execution context” == memory and hardware associated
to a specific stream of instructions (e.g. a thread)

Multiple cores lead to MIMD computers

 GPU Design Idea #1: more slow cores
The first big idea that differentiates GPU and CPU core design:

slim down the footprint of each core.

Slides and graphics based on presentations
from Andreas Klöckner and Kayvon Fatahalian 9

Fetch/Decode

ALU (Execute)

Execution
contexts

Idea #1:

Remove the modules that
help a single instruction

execute fast.

 GPU Design Idea #1: more slow cores

See: Andreas Klöckner
and Kayvon Fatahalian 10

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

 GPU Design Idea #2: lock stepping

11
See: Andreas Klöckner
and Kayvon Fatahalian

Fetch/Decode

ALU 1

Shared Ctx Data

Ctx

ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

shared memory
SIMD model

In the GPU rendering context, the instruction streams are
typically very similar.

Design for a “single instruction multiple data” SIMD model:
share the cost of the instruction stream across many ALUs

Fetch/Decode

ALU (Execute)

Execution
contexts

 GPU Design Idea #2: branching ?

12
See: Andreas Klöckner
and Kayvon Fatahalian

Question:

What happens when the instruction streams
include branching ?

The assumption that the instruction streams
are synchronized is broken.

 GPU Design Idea #2: lock stepping w/ branching

13See: Andreas Klöckner and Kayvon Fatahalian

Non branching code;

if(flag > 0){ /* branch */
 x = exp(y);
 y = 2.3*x;
}
else{
 x = sin(y);
 y = 2.1*x;
}

Non branching code;

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T T F T T F F F

✓ ✓ X ✓ ✓ X X X

✓ ✓ X ✓ ✓ X X X

X X ✓ X X ✓ ✓ ✓

X X ✓ X X ✓ ✓ ✓

Time

The cheap branching approach means that some ALUs are idle as all ALUs
traverse all branches [executing NOPs if necessary]

In the worst possible case we could see 1/8 of maximum performance.

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 GPU Design Idea #3: stalls

14
See: Andreas Klöckner
and Kayvon Fatahalian

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Time

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

work on registers;
work on registers;
work on registers;

load registers from main
memory;

It takes O(1000) cycles to load data from off
chip memory into the SM registers file

These ALUs are idled (stalled) after a load

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 GPU Design Idea #3: context switching

15
See: Andreas Klöckner
and Kayvon Fatahalian

Fetch/Decode

ALU 1

Shared Ctx Data

Ctx

ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Idea #3: enable fast context switching so the ALUs
 can efficiently alternate between different tasks.

Fetch/Decode

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

 GPU Design Idea #3: context switching

16
See: Andreas Klöckner
and Kayvon Fatahalian

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Time

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx1: work on registers;
Ctx1: work on registers;
Ctx1: work on registers;
Ctx1: load request, switch context;✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx3: work on registers;
Ctx3: work on registers;
Ctx3: work on registers;
Ctx3: load request, switch context;✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx2: work on registers;
Ctx2: work on registers;
Ctx2: work on registers;
Ctx2: load request, switch context;

Ctx1: load done so continue

COMP 322, Spring 2013 (V. Sarkar)

Summary: CPUs and GPUs have
fundamentally different design

DRAM

Co
Ca A A A A A A A A A A A A A A A A

Streaming Multiprocessor

Cache

ALU
Control

ALU

ALU

ALU

DRAM

Single CPU core Multiple GPU processors

GPU = Graphics Processing Unit

GPUs are provided to accelerate graphics, but they can also be used
for non-graphics applications that exhibit large amounts of data
parallelism and require large amounts of “streaming” throughput
⇒ SIMD parallelism within an SM, and SPMD parallelism across SMs

17

GPU Nomenclature
• The GPU has its own independent memory space.

• The GPU brick is a separate compute sidecar.

• We refer to:

• the GPU as a “DEVICE”

• the CPU as the “HOST”

• An array that is in HOST-attached memory is not directly
visible to the DEVICE, and vice versa.

• To load data onto the DEVICE from the HOST:

• We allocate memory on the DEVICE for the array

• We then copy data from the HOST array to the DEVICE
array

• To retrieve results from the DEVICE they have to be
copied from the DEVICE array to the HOST array.

18

CUDA Software Stack

Figure Credit: NVIDIA CUDA Compute Unified Device Architecture Programming Guide 1.1

Today we will
focus mostly

on the CUDA
Runtime level

19

CUDA = Common Unified Device Architecture
OpenCL is an alternative language for programming GPUs

CUDA and OpenCL are based on C. More recently, the APARAPI project
was created to support GPU programming from Java

 Outline of a CUDA Code

20

pseudo_cuda_code.cu:

__global__ void kernel(arguments) {

 instructions for a single GPU thread;
}

...

main(){

set up GPU arrays;

copy CPU data to GPU;

kernel <<< # thread blocks, # threads per block >>> (arguments);

copy GPU data to CPU;

}

COMP 322, Spring 2013 (V. Sarkar)

Process Flow of a CUDA Kernel Call
(Compute Unified Device Architecture)

• Data parallel programming architecture from NVIDIA
—Execute programmer-defined kernels on

extremely parallel GPUs
—CUDA program flow:

1. Push data on device
2. Launch kernel
3. Execute kernel and memory accesses in

parallel
4. Pull data off device

• Device threads are launched in batches
—Blocks of Threads, Grid of Blocks

• Explicit device memory management
—cudaMalloc, cudaMemcpy, cudaFree, etc.

• NOTE: OpenCL is a newer standard for GPU
programming that is more portable than CUDA Figure source: Y. Yan et. al “JCUDA: a

Programmer Friendly Interface for
Accelerating Java Programs with CUDA.”
Euro-Par 2009.

21

COMP 322, Spring 2013 (V. Sarkar)

Execution of a CUDA program
• Integrated host+device application

— Serial or modestly parallel parts on CPU host
— Highly parallel kernels on GPU device

Host Code
(small number of threads)

. . .

. . .

Device Kernel
(large number of threads)

Host Code
(small number of threads)

Device Kernel
(large number of threads)

Host Code
(small number of threads)

22

COMP 322, Spring 2013 (V. Sarkar)

Matrix multiplication kernel code in CUDA
--- SPMD model with 2D index (threadIdx)

23

COMP 322, Spring 2013 (V. Sarkar)

Host Code in C for Matrix Multiplication
1. void MatrixMultiplication(float* M, float* N, float* P, int Width)

{

2. int size = Width*Width*sizeof(float); // matrix size

3. float* Md, Nd, Pd; // pointers to device arrays

4. cudaMalloc((void**)&Md, size); // allocate Md on device

5. cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); // copy M to Md

6. cudaMalloc((void**)&Nd, size); // allocate Nd on device

7. cudaMemcpy(Nd, M, size, cudaMemcpyHostToDevice); // copy N to Nd

8. cudaMalloc((void**)&Pd, size); // allocate Pd on device

9. dim3 dimBlock(Width,Width); dim3 dimGrid(1,1);

10. // launch kernel (equivalent to “async at(GPU), forall, forall”

11. MatrixMulKernel<<<dimGrid,dimBlock>>>(Md, Nd, Pd, Width);

12. cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); // copy Pd to P

13. // Free device matrices

14. cudaFree(Md); cudaFree(Nd); cudaFree(Pd);

15. }

24

COMP 322, Spring 2013 (V. Sarkar)

HJ abstraction of a CUDA kernel
invocation: async at + forall + forall

async at(GPU)

async at(GPU)

forall(blockIdx)

forall(threadIdx)

25

COMP 322, Spring 2013 (V. Sarkar)

CUDA Host-Device Data Transfer

• cudaError_t cudaMemcpy(void* dst, const
void* src, size_t count, enum cudaMemcpyKind
kind)

• copies count bytes from the memory area
pointed to by src to the memory area pointed to
by dst, where kind is one of
—cudaMemcpyHostToHost
—cudaMemcpyHostToDevice
—cudaMemcpyDeviceToHost
—cudaMemcpyDeviceToDevice

• The memory areas may not overlap
• Calling cudaMemcpy() with dst and src pointers

that do not match the direction of the copy
results in an undefined behavior.

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Mem
ory

Thread
(0, 0)

Regist
ers

Local
Mem
ory

Thread
(1, 0)

Regist
ers

Block (1, 0)

Shared Memory

Local
Mem
ory

Thread
(0, 0)

Regist
ers

Local
Mem
ory

Thread
(1, 0)

Regist
ers

Host

26

COMP 322, Spring 2013 (V. Sarkar)

CUDA Storage Classes
• Local Memory: per-thread

— Private per thread
— Auto variables, register spill

• Shared Memory: per-Block
— Shared by threads of the same

block
— Inter-thread communication

• Global Memory: per-application
— Shared by all threads
— Inter-Grid communication

Thread

Local Memory

Grid 0

. . .
Global

Memory

. . .

Grid 1
Sequential
Grids
in Time

Block

Shared
Memory

27

COMP 322, Spring 2013 (V. Sarkar)

Summary of key features in CUDA
CUDA construct Related HJ/Java constructs

Kernel invocation,
<<<. . .>>>

async at(gpu-place)

1D/2D grid with 1D/2D/3D
blocks of threads

Outer 1D/2D forall with inner 1D/2D/3D forall

Intra-block barrier,
__syncthreads()

HJ forall-next on implicit phaser for inner forall

cudaMemcpy() No direct equivalent in HJ/Java (can use
System.arraycopy() if needed)

Storage classes: local,
shared, global

No direct equivalent in HJ/Java (method-local
variables are scalars)

28

29 COMP 322, Spring 2013 (V. Sarkar)

Worksheet #34: Branching in SIMD code

Consider SIMD execution of the following pseudocode with 8 threads.
Assume that each call to doWork(x) takes x units of time, and ignore
all other costs. How long will this program take when executed on 8
GPU cores, taking into consideration the branching issues discussed
in Slide 13?

1. int tx = threadIdx.x; // ranges from 0 to 7
2. if (tx % 2 = 0) {
3. S1: doWork(1); // Computation S1 takes 1 unit of time
4. }
5. else {
6. S2: doWork(2); // Computation S2 takes 2 units of time
7. }

Name: ___________________ Netid: ___________________

