
COMP 322: Fundamentals of
Parallel Programming

Lecture 34: Volatile Variables,
Memory Consistency Models

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 35 18 April 2014

COMP 322, Spring 2014 (V.Sarkar)29 COMP 322, Spring 2013 (V. Sarkar)

Worksheet #34: Branching in SIMD code
Consider SIMD execution of the following pseudocode with 8 threads.
Assume that each call to doWork(x) takes x units of time, and ignore
all other costs. How long will this program take when executed on 8
GPU cores, taking into consideration the branching issues discussed
in Slide 13?

1. int tx = threadIdx.x; // ranges from 0 to 7
2. if (tx % 2 = 0) {
3. S1: doWork(1); // Computation S1 takes 1 unit of time
4. }
5. else {
6. S2: doWork(2); // Computation S2 takes 2 units of time
7. }

Solution: 3 units of time (WORK=12, CPL=3)

COMP 322, Spring 2014 (V.Sarkar)

Memory Visibility
• Basic question: if a memory location L is written by statement S1

in thread T1, when is that write guaranteed to be visible to a read
of L in statement S2 of thread T2?

• HJ answer: whenever there is a directed path of edges from S1 in
S2 in the computation graph

—Computation graph edges are defined by semantics of parallel
constructs: async, finish, async-await, futures, phasers, isolated,
object-based isolation

• Java answer: whenever there is a “happens-before” relation
between S1 and S2

==> Should we define “happens-before” using time or ordering?
—Is there such a thing as universal global time?

3

COMP 322, Spring 2014 (V.Sarkar)

Troublesome example
1. public class NoVisibility {
2. private static boolean ready;
3. private static int number;
4.
5. private static class ReaderThread extends Thread {
6. public void run() {
7. while (!ready) Thread.yield()
8. System.out.println(number)
9. }
10. }
11.
12. public static void main(String[] args) {
13. new ReaderThread().start();
14. number = 42;
15. ready = true;
16. }
17. }

4

No happens-before ordering between main
thread and ReaderThread
==> ReaderThread may loop forever OR may
print 42 OR may print 0 !!

COMP 322, Spring 2014 (V.Sarkar)

Volatile Variables available in Java
• Java provides a “light” form of synchronization/fence operations in the

form of volatile variables (fields)

• Volatile variables guarantee visibility
—Reads and writes of volatile variables should be assumed to occur in isolated blocks
—Adds serialization edges to computation graph due to isolated read/write operations

on same volatile variable

• Incrementing a volatile variable (++v) is not thread-safe
—Increment operation looks atomic, but isn’t (read and write are two separate

operations)

• Volatile variables are best suited for flags that have no dependencies e.g.,
 volatile boolean asleep;
 foo() { ... while (! asleep) ++sheep; ... }

— WARNING: In the absence of volatile declaration, the above code can legally be
transformed to the following

boolean asleep;

foo(){ boolean temp=asleep; ... while (! temp) ++sheep; ... }

5

COMP 322, Spring 2014 (V.Sarkar)

Troublesome example fixed with volatile
declaration

1. public class NoVisibility {
2. private static volatile boolean ready;
3. private static volatile int number;
4.
5. private static class ReaderThread extends Thread {
6. public void run() {
7. while (!ready) Thread.yield()
8. System.out.println(number)
9. }
10. }
11.
12. public static void main(String[] args) {
13. new ReaderThread().start();
14. number = 42;
15. ready = true;
16. }
17. }

6

Declaring number and ready as volatile ensures
happens-before-edges: 14-->15-->7-->8,
thereby ensuring that only 42 will be printed

COMP 322, Spring 2014 (V.Sarkar)

Data Races are usually Errors,
but not always

• Example of Data Race Error
1. for (p = first; p != null; p = p.next)
2. async p.x = p.y + p.z;
3. for (p = first; p != null; p = p.next)
4. sum += p.x;

• Example of intentional (benign) data race
• Search algorithm that returns any match (need not be the first match)
1. static int index = -1; // static field
2. . . .
3. finish for (int i = 0; i <= N - M; i++) async {
4. for (j = 0; j < M; j++)
5. if (text[i+j] != pattern[j]) break;
6. if (j == M) index = i; // found at offset i
7. }

• In both cases, the semantics of data races still needs to be fully
specified

7

COMP 322, Spring 2014 (V.Sarkar)8

Semantics of Data Races
Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. System.out.println("First read = " + p.x);

11. System.out.println("Second read = " + q.x);

12. System.out.println("Third read = " + p.x);

13.}

Task T1 Task T2

Task T3 Task T4

p.x=1; p.x=2;

...=p.x;

...=q.x;

...=p.x;

...=p.x;

...=p.x;

...=p.x;

Can the following values be
printed by tasks T3 & T4?

T3: 0, 0, 0
T4: 1, 2, 1

COMP 322, Spring 2014 (V.Sarkar)

Program Order != Reality, for Racy Programs

• Programmer’s view:
—Everything happens in the order I indicate through the code

statements that I write

• Reality (JVM/compiler & hardware processor):
—Everything happens in whatever order yields best performance, so

long as the program(mer) can’t tell the difference

• For data-race-free programs
—Program order can’t be distinguished from actual order

• For “racy” programs
—Different tasks can see different actions in memory

At different times
In different orders

COMP 322, Spring 2014 (V.Sarkar)

Memory Consistency Models
• A memory consistency model, or memory model, is the part of a programming

specification that defines what write values a read may observe
— For data-race-free programs, all memory models are identical since each read can

observe exactly one write value
⇒ if you only write data-race-free programs, you don’t have to worry about memory

models!

• Question: why do different memory models have different rules for data
races?

• Answer: because different memory models are useful at different levels of
software

— Sequential Consistency (SC)
– Useful for implementing low-level synchronization primitives e.g., operating
system services

— Java Memory Model (JMM)
– Useful for implementing task schedulers e.g., HJ runtime

— Habanero Java Memory Model (HJMM)
– Useful for specifying semantics at application task level e.g., HJ programs
– Derived from past work on “Location Consistency” memory model

SC

JMM

HJMM

10

COMP 322, Spring 2014 (V.Sarkar)11

Sequential Consistency Memory Model

COMP 322, Spring 2014 (V.Sarkar)

Sequential Consistency (SC) Memory Model
• SC constrains all memory operations across

all tasks
– Write → Read

– Write → Write

– Read → Read

– Read → Write

- Simple model for reasoning about data races
at the hardware level, but may lead to counter-
intuitive behavior at the application level e.g.,
- A programmer may perform modular code

transformations for software engineering
reasons without realizing that they are
changing the program’s semantics

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p.x; (5)

...=q.x; (7)

...=p.x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
2

O
u
t
p
u
t

COMP 322, Spring 2014 (V.Sarkar)13

Consider a “reasonable” code
transformation performed by a programmer

Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. // Assume programmer doesn’t know that p=q

11. int p_x = p.x;

12. System.out.println("First read = " + p_x);

13. System.out.println("Second read = " + q.x);

14. System.out.println("Third read = " + p_x);

15.}

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

COMP 322, Spring 2014 (V.Sarkar)14

Consider a “reasonable” code
transformation performed by a programmer

Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. // Assume programmer doesn’t know that p=q

11. int p_x = p.x;

12. System.out.println("First read = " + p_x);

13. System.out.println("Second read = " + q.x);

14. System.out.println("Third read = " + p_x);

15.}

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

This reasonable code
transformation resulted in
an illegal output, under the

SC model!

COMP 322, Spring 2014 (V.Sarkar)

The Java Memory Model (JMM)
and the Habanero-Java Memory Model (HJMM)

• Conceptually simple:
—Every time a variable is written, the value is added to the set of “most

recent writes” to the variable
—A read of a variable is allowed to return ANY value from this set

• The JMM defines the rules by which values in the set are removed
—By using ordering relationships (“happens-before”) similar to the

Computation Graph to determine when a value must be overwritten

• HJMM has weaker ordering rules for HJ’s “isolated” statements,
compared to Java’s “synchronized” blocks

• Programmer’s goal: through proper use of synchronization
—Ensure the absence of data races, in which case this set will never

contain more than one value and SC, JMM, HJMM will all have the
same semantics

COMP 322, Spring 2014 (V.Sarkar)16

Code Transformation Example
Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. // Assume programmer doesn’t know that p=q

11. int p_x = p.x;

12. System.out.println("First read = " + p_x);

13. System.out.println("Second read = " + q.x);

14. System.out.println("Third read = " + p_x);

15.}

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

This output is legal under
the JMM and HJMM!

COMP 322, Spring 2014 (V.Sarkar)

Semantics-Preserving Code
Transformations in Sequential Programs

• A Code Transformation is said to be semantics-preserving if the
transformed program, P’, exhibits the same Input-Output behavior as the
original program, P

• For sequential programs, many local transformations are guaranteed to
be semantics-preserving regardless of the context
—e.g., replacing the second access of an object field or array element by

a local variable containing the result of the first access, if there are no
possible updates between the two accesses

17

1. static void foo(T p, T q) {

2. System.out.println(p.x);

3. System.out.println(q.x);

4. System.out.println(p.x);

5. }

1. static void foo(T p, T q) {

2. int xLocal = p.x;

3. System.out.println(xLocal);

4. System.out.println(q.x);

5. System.out.println(xLocal);

6. }

P
P’

COMP 322, Spring 2014 (V.Sarkar)

Semantics-Preserving Code
Transformations in Parallel Programs

• Question: What should we expect if we perform a Code Transformation on
a sequential region of a parallel program, if the transformation is known
to be semantics-preserving for sequential programs?

• Answer: The transformation should be semantics-preserving for the
parallel program if there are no data races. Otherwise, it depends on the
memory model!

18

1. p.x = 0; q = p;

2. async p.x = 1;

3. async p.x = 2;

4. async foo(p, p);

5. async foo(p, q);

6. . . .

7. static void foo(T p, T q) {

8. System.out.println(p.x);

9. System.out.println(q.x);

10. System.out.println(p.x);

11. }

P P’ 1. p.x = 0; q = p;

2. async p.x = 1;

3. async p.x = 2;

4. async foo(p, p);

5. async foo(p, q);

6. . . .

7. static void foo(T p, T q) {

8. int xLocal = p.x

9. System.out.println(xLocal);

10. System.out.println(q.x);

11. System.out.println(xLocal);

12. }

Is this a legal
transformation?

It may result in the
following output:

0 0 0
1 2 1

==> Code transformation is legal for JMM & HJMM,
but not for SC !

COMP 322, Spring 2014 (V.Sarkar)19

When are actions visible and ordered
with other Threads in the JMM?

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

Everything
before

the unlock is
visible to
everything
after the

matching lock in
the JMM

lock/unlock operations can come from synchronized
statement or from explicit calls to locking libraries

COMP 322, Spring 2014 (V.Sarkar)

Troublesome example fixed with empty
synchronized statements instead of volatile (JMM)

1. public class NoVisibility {
2. private static boolean ready;
3. private static int number;
4. private static final Object a = new Object();
5.
6. private static class ReaderThread extends Thread {
7. public void run() {
8. synchronized(a){}
9. while (!ready) { Thread.yield(); synchronized(a){} }
10. System.out.println(number);
11. }
12. }
13.
14. public static void main(String[] args) {
15. new ReaderThread().start();
16. number = 42;
17. ready = true; synchronized(a){}
18. }
19. }

20

Empty synchronized statement is NOT a no-op
in Java. It acts as a memory “fence”.

COMP 322, Spring 2014 (V.Sarkar)21

When are actions visible and ordered
with other Threads in the HJMM?

x = 1

end-isolated

Thread 1

begin-isolated

i = x

Thread 2

begin-isolated

y = 1

end-isolated

j = y

Everything within
the first

isolated region is
visible to
everything

in the second
isolated region,
in the HJMM

COMP 322, Spring 2014 (V.Sarkar)

Empty isolated statements are no-ops in HJ
1. public class NoVisibility {
2. private static boolean ready;
3. private static int number;
4.
5. private static class ReaderThread extends Thread {
6. public void run() {
7. isolated{}
8. while (!ready) { Thread.yield(); isolated{} }
9. System.out.println(number);
10. }
11. }
12.
13. public static void main(String[] args) {
14. new ReaderThread().start();
15. number = 42;
16. ready = true; isolated {}
17. }
18. }

22

Empty isolated statement is a no-op in HJ. ReaderThread
may loop forever OR may print 42 OR may print 0.

COMP 322, Spring 2014 (V.Sarkar)

Better to use explicit synchronization
in HJ instead

1. public class NoVisibility {
2. private static boolean ready;
3. private static int number;
4. private static DataDrivenFuture<Boolean>
5. readyDDF = new DataDrivenFuture<Boolean>();
6.
7. public static void main(String[] args) {
8. async await(readyDDF){ System.out.println(number); }
9. number = 42;
10. readyDDF.put(true);
11. }
12. }

23

COMP 322, Spring 2014 (V.Sarkar)

Summary of Memory Model Discussion
• Memory model specifies rules for what write values can

be seen by reads in the presence of data races
—In the absence of data races, program semantics specifies

exactly one write for each read

• A local code transformation performed on a sequential
code region may be semantics-preserving for sequential
programs, but not necessarily for parallel programs
—Stronger memory models (e.g., SC) are more restrictive

about permissible read sets than weaker memory models
(e.g., JMM, HJMM), and thus more restrictive about allowing
transformations

• Different memory models are appropriate for different
levels of the software stack
—e.g., SC at the OS/HW level, JMM at the thread level, HJMM at

the task level

24

SC

JMM

HJMM

COMP 322, Spring 2014 (V.Sarkar)29 COMP 322, Spring 2013 (V. Sarkar)

Worksheet #35: Double Checked Locking Idiom in
Java

Consider two threads calling the getHelper() method in parallel:
1) Can you construct a possible data race if they call the unoptimized version of getHelper() in lines 3-8?
2) Can you construct a possible data race if they call the optimized version of getHelper() in lines 12-21?
3) How will your answer to 2) change if the helper field in line 11 was declared as volatile?

Name: ___________________ Netid: ___________________

COMP 322, Spring 2014 (V.Sarkar)29 COMP 322, Spring 2013 (V. Sarkar)

Worksheet #35 (contd)
1. class Foo { //unoptimized version

2. private Helper helper; // Singleton pattern

3. public synchronized Helper getHelper() {

4. if (helper == null) {

5. helper = new Helper();

6. }

7. return helper;

8. }

9. . . .

10.class Foo { //Optimized version

11. private Helper helper; // Singleton pattern

12. public Helper getHelper() {

13. if (helper == null) {

14. synchronized(this) {

15. if (helper == null) {

16. helper = new Helper();

17. }

18. }

19. }

20. return helper;

21. }

22. . . .

COMP 322, Spring 2014 (V.Sarkar)

Announcements
• Graded midterms can be picked up from Melissa Cisneros in

Duncan Hall room 3122 (mcisnero@rice.edu)

• Homework 5 due by 11:55pm on Monday, April 21st
—Send email to comp322-staff@rice.edu if you plan to use slip days

• Homework 6 assigned today
—Written-only, no programming assignments
—Due by 11:55pm on April 25th, penalty-free extension till May 2nd

• No lab next week

• April 25th is last day of classes
—Exam 2 will be handed out on April 25th

– Take-home exam, due by May 2nd

27

