
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 16: Phasers, Point-to-Point

Synchronization

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 16 18 February 2015

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Recap of Multiprocessor Scheduling of
a Computation Graph (Lecture 3)

1

1

10

A

B C

F

1

1 110 1D E

This schedule was obtained by mapping
computation graph nodes to processor
assuming:
1. Non-preemption (no context switch in the
middle of a node)
2. Greedy schedule (a processor is never idle
if work is available)
There may be multiple possible schedules
with these assumptions

Start
time

Proc 1 Proc 2

0 A
1 B F
2 D F
3 D F
4 D F
5 D F
6 D F
7 D F
8 D F
9 D F

10 D F
11 D C
12 E
13

Schedule with execution time, T2 = 13

2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Two possible HJ programs for this
Computation Graph (there can be others ...)

1

1

10

A

B C

F

1

1 110 1D E

 // Program Q1

 A;

 finish {

 async { B; D; }

 async F;

 async { C; E; }

 }

There is no significance to the
left-to-right ordering of edges in a
computation graph, which is why
there can be multiple parallel
programs for the same
computation graph

 // Program Q2

 A;

 finish {

 async { C; E; }

 async F;

 async { B; D; }

 }

3

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Work-first vs. Help-first
work-stealing policies (Lec 15)

• When encountering an async
• Help-first policy

• Push async on “bottom” of local queue, and
execute next statement

• Work-first policy
• Push continuation (remainder of task

starting with next statement) on “bottom”
of local queue, and execute async

• When encountering the end of a finish scope
• Help-first policy & Work-first policy

• Store continuation for end-finish
• Will be resumed by last async to

complete in finish scope
• Pop most recent item from “bottom” of local

queue
• If local queue is empty, steal from “top” of

another worker’s queue

•Current HJ-lib runtime only supports help-first policy

w1 w2 w3

Stealing by w2 and w3

w1 w2 w3

Local push/pop by w1

“top”

“bottom”

4

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Scheduling Program Q1 using a
Work-First Work-Stealing Scheduler

1

1

10

A

B C

F

1

1 110 1D E

1. // Program Q1

2. A; // Executes on P1

3. finish {

4. // P1 pushes continuation for 9,

5. // and executes 6

6. async { B; D; }

7. // P2 pushes continuation for 11,

8. // and executes 9

9. async F;

10. // P2 executes 11

11. async { C; E; }

12. }

Start
time

Proc 1 Proc 2

0 A
1 B F
2 D F
3 D F
4 D F
5 D F
6 D F
7 D F
8 D F
9 D F

10 D F
11 D C
12 E
13

5

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Scheduling Program Q1 using a
Help-First Work-Stealing Scheduler

1

1

10

A

B C

F

1

1 110 1D E
1. // Program Q1

2. A; // Executes on P1

3. finish {

4. // P1 pushes 6, which is then

5. // stolen by P2

6. async { B; D; }

7. // P1 pushes 8

8. async F;

9. // P1 pushes 10

10. async { C; E; }

11. }

12. // P1 stores continuation and pops 10

13. // P1 pops 8

Start
time

Proc 1 Proc 2

0 A
1 C B
2 E D
3 F D
4 F D
5 F D
6 F D
7 F D
8 F D
9 F D

10 F D
11 F D
12 F
13

6

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

!
!
For each of the continuations below, label it as “WF” if
a work-first worker can switch from one task to
another at that point and as “HF” if a help-first worker
can switch from one task to another at that point.
Some continuations may have both labels.
!
1.finish { // F1

2. async A1;

3. finish { // F2

4. async A3;

5. async A4;

6. }

7. S5;

8.}

Worksheet #15 solution: Work-First
vs. Help-First Work-Stealing Policies

ContinuationsWF

WF
WF
WF, HF

WF, HF

7

A1

A3 A4

F2

F1

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

HJ code for One-Dimensional Iterative Averaging
with forall-forseq structure and barriers (Recap from Lec 12)

1. double[] gVal=new double[n+2]; gVal[n+1] = 1;

2. double[] gNew=new double[n+2];

3. forallPhased(1, n, (j) -> { // Create n tasks

4. // Initialize myVal and myNew as local pointers

5. double[] myVal = gVal; double[] myNew = gNew;

6. forseq(0, m-1, (iter) -> {

7. // Compute MyNew as function of input array MyVal

8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

9. next(); // Barrier before executing next iteration of iter loop

10. // Swap local pointers, myVal and myNew

11. double[] temp=myVal; myVal=myNew; myNew=temp;

12. // myNew becomes input array for next iteration

13. }); // forseq

14. }); // forall

8 COMP 322, Spring 2014 (V.Sarkar)

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Point-to-point synchronization
!

Question: when can the point-to-point computation graph result
in a smaller CPL than the barrier computation graph?

iter = i

iter = i+1

Barrier synchronization

Barrier vs Point-to-Point

iter = i

iter = i+1

9

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Phasers: a unified construct for barrier
and point-to-point synchronization

• HJ phasers unify barriers with point-to-point synchronization
—Inspiration for java.util.concurrent.Phaser

• Previous example motivated the need for “point-to-point” synchronization

— With barriers, phase i of a task waits for all tasks associated with the
same barrier to complete phase i-1

— With phasers, phase i of a task can select a subset of tasks to wait for

• Phaser properties
—Support for barrier and point-to-point synchronization
—Support for dynamic parallelism --- the ability for tasks to drop phaser

registrations on termination (end), and for new tasks to add phaser
registrations (async phased)

—A task may be registered on multiple phasers in different modes

10

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Simple Example with Four Async Tasks
and One Phaser

1. finish (() -> {!
2. ph = newPhaser(HjPhaserMode.SIG_WAIT); // mode is SIG_WAIT!
3. asyncPhased(ph.inMode(HjPhaserMode.SIG), () -> { !
4. // A1 (SIG mode)!
5. doA1Phase1(); next(); doA1Phase2(); });!
6. asyncPhased(ph.inMode(HjPhaserMode.DEFAULT_MODE), () -> { !
7. // A2 (default SIG_WAIT mode from parent)!

8. doA2Phase1(); next(); doA2Phase2(); });!
9. asyncPhased(ph.inMode(HjPhaserMode.DEFAULT_MODE), () -> { !
10. // A3 (default SIG_WAIT mode from parent)!
11. doA3Phase1(); next(); doA3Phase2(); }); !
12. asyncPhased(ph.inMode(HjPhaserMode.WAIT), () -> { !
13. // A4 (WAIT mode)!
14. doA4Phase1(); next(); doA4Phase2(); });!
15. });

11

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Simple Example with Four Async Tasks
and One Phaser

12

Semantics of next depends on registration mode
SIG_WAIT: next = signal + wait
SIG: next = signal
WAIT: next = wait

signal

wait
next

SIG SIG_WAIT SIG_WAIT WAIT

 A master thread (worker) gathers all signals and broadcasts a barrier completion

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Summary of Phaser Construct
• Phaser allocation

— HjPhaser ph = newPhaser(mode);
– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— HjPhaserMode.SIG, HjPhaserMode.WAIT,  

HjPhaserMode.SIG_WAIT, HjPhaserMode.SIG_WAIT_SINGLE
– NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
— asyncPhased (ph1.inMode(<mode1>), ph2.inMode(<mode2>), … () -> <stmt>)

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– asyncPhased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
— next();

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

13

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Capability Hierarchy

• A task can be registered in one of four modes with respect to a
phaser: SIG_WAIT_SINGLE, SIG_WAIT, SIG, or WAIT. The mode
defines the set of capabilities — signal, wait, single — that the task
has with respect to the phaser. The subset relationship defines a
natural hierarchy of the registration modes. A task can drop (but
not add) capabilities after initialization.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }

14

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

forall barrier is just an implicit phaser!
1. forallPhased(iLo, iHi, (i) -> {

2. S1; next(); S2; next();{...}

3. });

!
is equivalent to

!
1. finish(() -> {

2. // Implicit phaser for forall barrier

3. final HjPhaser ph = newPhaser(SIG_WAIT);

4. forseq(iLo, iHi, (i) -> {

5. asyncPhased(ph.inMode(SIG_WAIT), () -> {

6. S1; next(); S2; next();{...}

7. }); // next statements in async refer to ph

8. });

15

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

The world according to COMP 322
before Barriers and Phasers

• All the other parallel constructs that we learned focused on task creation
and termination

—async creates a task
– forasync creates a set of tasks specified by an iteration region

—finish waits for a set of tasks to terminate
– forall (like “finish forasync”) creates and waits for a set of tasks

specified by an iteration region
—future get() waits for a specific task to terminate
—asyncAwait() waits for a set of DataDrivenFuture values before starting

• Motivation for barriers and phasers
—Deterministic directed synchronization within tasks
—Separate from synchronization associated with task creation and

termination

16

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

The world according to COMP 322 after
Barriers and Phasers

• SPMD model: express iterative synchronization using phasers
— Implicit phaser in a forall supports barriers as “next” statements

– Matching of next statements occurs dynamically during program execution
– Termination signals “dropping” of phaser registration

— Explicit phasers
– Can be allocated and transmitted from parent to child tasks
– Phaser lifetime is restricted to its IEF (Immediately Enclosing Flnish) scope

of its creation
– Four registration modes -- SIG, WAIT, SIG_WAIT, SIG_WAIT_SINGLE
– signal statement can be used to support “fuzzy” barriers
– bounded phasers can limit how far ahead producer gets of consumers

• Difference between phasers and data-driven tasks (DDTs)
— DDTs enforce a single point-to-point synchronization at the start of a task
— Phasers enforce multiple point-to-point synchronizations within a task

17

