
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 25: Concurrent Objects,

Linearizability of Concurrent Objects

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 25 20 March 2015

COMP 322, Spring 2014 (V.Sarkar)

Solution to Worksheet #24:
Ideal Parallelism in Actor Pipeline

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

Consider a three-stage pipeline of actors set up so that P0.nextStage = P1,
P1.nextStage = P2, and P2.nextStage = null. The process() method for each
actor is shown below. Assume that 100 non-null messages are sent to actor P0
after all three actors are started, followed by a null message. What will the total
WORK and CPL be for this execution? Recall that each actor has a sequential
thread.
!
Solution: WORK = 300, CPL = 102

1. protected void process(final Object msg) {
2. if (msg == null) {
3. exit();
4. } else {
5. doWork(1); // unit work
6. }
7. if (nextStage != null) {
8. nextStage.send(msg);
9. }
10. }
 

...

2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Concurrent Objects
• A concurrent object is an object that can correctly handle methods

invoked in parallel by different tasks or threads
— Also referred to as “thread-safe objects”

• For simplicity, it is usually assumed that the body of each method in a
concurrent object is itself sequential
— Assume that method does not create child async tasks

• Implementations of methods can be serialized (e.g., enclose each
method in an actor or an object-based isolated statement) or can be
concurrent (e.g., by using read-write modes in object-based isolation)

• A desirable goal is to develop implementations that are concurrent
while being as close to the semantics of the serial version as possible

• Examples of concurrent objects: atomic variables, shared buffers,
concurrent lists, concurrent hashmaps, …

3

4 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example #1 of a Concurrent Object: !
Implementing an Unbounded Buffer using Actors

Master

…
unbounded buffer

Producer-P

Producer-2

Producer-1

…

Consumer-C

Consumer-2

Consumer-1

…

5 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Unbounded Buffer Actor Interaction
Diagram

Producer-P Master

2. Request Data from
an idle producer

4. Send newly produced data

5. Store data item in buffer

1. Determine new item required

3. Produce Data

6 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Unbounded Buffer Actor Interaction
Diagram (contd)

Master Consumer-C

2. Send Data to an idle
consumer

3. Notify master of
becoming idle

4. Store idle consumer locally
for future use

1. Retrieve data item
from buffer

3. Consume Data

7 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Actor Responsibilities

• Master Actor
—Receives Data Items from the producers
—Stores data items in its unbounded buffer
—Send data items to idle consumers
—Receives notifications when consumers are idle

• Producer Actor
—Receives requests to produce items
—Sends data items to the Master

• Consumer Actor
—Receives requests from Master to consume an item
—Sends notification to Master when it becomes idle

8 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example #2 of a Concurrent Object: !
Implementing an Bounded Buffer using Actors

Master

bounded circular buffer
Producer-P

Producer-2

Producer-1

…

Consumer-C

Consumer-2

Consumer-1

…

0

1

3

2

4

5

…

B

• Assume that B > P to allow for the case where producer messages may be
in flight

23 COMP 322, Spring 2013 (V.Sarkar)

Bounded Buffer Actor Interaction Diagram
Producer-P Master

3. Request Data from
selected producer

4. Send newly produced data

5. Store data item in buffer
6. Store producer locally as idle

1. Space available in buffer
2. Select an idle producer

4. Produce Data

24 COMP 322, Spring 2013 (V.Sarkar)

Bounded Buffer Actor Interaction Diagram
(contd)

Master Consumer-C

3. Send Data to an
selected consumer

5. Notify master of
becoming idle

4. Store idle consumer locally
for future selection

1. Select an idle consumer
2. Retrieve data item from buffer
3. Select a producer

4. Consume Data

Producer-P

3. Request Data from
selected producer  
(previous slide)

11 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Actor Responsibilities

• Master Actor
—Sends requests to an idle producer when there is space in buffer
—Receives Data Items from the producers
—Stores data items in its bounded buffer
—Send data items to idle consumers, thus making space in buffer
—Receives notifications when consumers are idle

• Producer Actor
—Receives requests from Master to produce items
—Sends data items to the Master indirectly notifying it is now idle

• Consumer Actor
—Receives requests from Master to consume an item
—Sends notification to Master when it becomes idle

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Correctness of a
Concurrent Object

• Consider a simple FIFO (First In, First Out) queue as a canonical
example of a concurrent object
— Method q.enq(o) inserts object o at the tail of the queue

– Assume that there is unbounded space available for all enq()
operations to succeed

— Method q.deq() removes and returns the item at the head of the
queue.
– Throws EmptyException if the queue is empty.

• What does it mean for a concurrent object like a FIFO queue to be
correct?
— What is a concurrent FIFO queue?
— FIFO implies a strict temporal order
— Concurrent implies an ambiguous temporal order

12

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Describing the concurrent via the sequential

time

q.deq():x

q.enq(x)

 enq(x) deq() returns x

 isolated-wait/begin isolated-end

isolated-wait/begin isolated-end

“Linearizability” --
sequence of enq() and
deq() calls is consistent
with sequential execution

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

13

Task T1

Task T2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Informal definition of Linearizability

• Assume that each method call takes effect “instantaneously”
at some specific point in time between its invocation and
return.

• An execution is linearizable if we can choose one set of
instantaneous points that is consistent with a sequential
execution in which methods are executed at those points
• It’s okay if some other set of instantaneous points is not

linearizable
• A concurrent object is linearizable if all its executions are

linearizable
• Linearizability is a “black box” test based on the object’s

behavior, not its internals

14

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example 1

time

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

15

Task T1

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example 1 (contd)

time

q.enq(x)

q.enq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

16

Task T1

Task T2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

17

Task T1

Task T2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq():y

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

18

Task T1

Task T2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq():y

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

19

Task T1

Task T2

linearizable(2)

(1)

(3)

(4)

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example 2: is this execution
linearizable?

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

20

Task T1

Task T2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

Example 3
Is this execution linearizable? How many possible linearizations
does it have?

21

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example 4: execution of an isolated
implementation of FIFO queue q

Is this a linearizable execution?

22

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example 5: execution of a concurrent
implementation of a FIFO queue q

Is this a linearizable execution?

23

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Linearizability of Concurrent Objects
(Summary)

Concurrent object
• A concurrent object is an object that can correctly handle methods

invoked in parallel by different tasks or threads
— Examples: concurrent queue, AtomicInteger
!

Linearizability
• Assume that each method call takes effect “instantaneously” at some

distinct point in time between its invocation and return.
• An execution is linearizable if we can choose instantaneous points

that are consistent with a sequential execution in which methods are
executed at those points

• An object is linearizable if all its possible executions are linearizable

24

