
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 27: Java synchronized statement

(contd), wait/notify operations

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 26 23 March 2015

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Unit 7.1: Java Threads (Recap)
• Execution of a Java program begins with an instance of Thread

created by the Java Virtual Machine (JVM) that executes the
program’s main() method.

• Parallelism can be introduced by creating additional instances of
class Thread that execute as parallel threads.

2

A lambda can be
passed as a Runnable

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Solution to Worksheet #26: Java Threads
1) Write a sketch of the pseudocode for a Java threads program that
exhibits a data race using start() and join() operations.
!

1. // Start of thread t0 (main program)
2. sum1 = 0; sum2 = 0; // Assume that sum1 & sum2 are fields
3. // Compute sum1 (lower half) and sum2 (upper half) in parallel
4. final int len = X.length;
5. Thread t1 = new Thread(() -> {
6. for(int i=0 ; i < len/2 ; i++) sum1+=X[i];});
7. t1.start();
8. Thread t2 = new Thread(() -> {
9. for(int i=len/2 ; i < len ; i++)

sum2+=X[i];});
10. t2.start();
11. int sum = sum1 + sum2; // data race between t0 & t1, and t0 & t2
12. t1.join(); t2.join();

3

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Solution to Worksheet #26: Java Threads
(contd)

2) Write a sketch of the pseudocode for a Java threads program that
exhibits a data race using synchronized statements.
!

1. // Start of thread t0 (main program)
2. sum = 0; // static int field
3. Object a = new ... ;
4. Object b = new ... ;
5. Thread t1 = new Thread(() -> { synchronized(a) { sum++; } });
6. Thread t2 = new Thread(() -> { synchronized(b) { sum++; } });
1. t1.start();
7. t2.start(); // data race between t1 & t2
8. t1.join(); t2.join();

4

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Unit 7.2: Objects and Locks in Java --- 
synchronized statements and methods

• Every Java object has an associated lock acquired via:
— synchronized statements

– synchronized(foo) { // acquire foo’s lock  
 // execute code while holding foo’s lock 
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock 

 // execute method while holding ‘this’ lock 
} // release ‘this’ lock

• Java language does not enforce any relationship between object used for locking and
objects accessed in isolated code
— If same object is used for locking and data access, then the object behaves like a

monitor
• Locking and unlocking are automatic

— Locks are released when a synchronized block exits
• By normal means: end of block reached, return, break
• When an exception is thrown and not caught

5

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Deadlock example with Java synchronized
statement

• The code below can deadlock if leftHand() and rightHand() are called concurrently from different threads
— Because the locks are not acquired in the same order

 public class ObviousDeadlock {
 . . .
 public void leftHand() {
 synchronized(lock1) {
 synchronized(lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 public void rightHand() {
 synchronized(lock2) {
 synchronized(lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

6

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Object-based isolation in HJ does not
deadlock

public class NoDeadlock2 {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 isolated (from, to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 } } } }

!
• HJ’s implementation guarantees that object-based isolation is deadlock-free
• However, HJ does not permit an inner isolated statement to add a new object e.g., the

following code is not permitted in HJ, but the equivalent synchronized version is permitted in
Java
Not permitted in HJ (if from != to) Permitted in Java
isolated (from) { synchronized (from) {

 isolated (to) { . . .} synchronized(to) { . . .}
} }

7

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Deadlock avoidance in HJ with object-
based isolation

• HJ implementation ensures that all locks are acquired by the runtime in the same order

• ==> no deadlock
 public class NoDeadlock1 {
 . . .
 public void leftHand() {
 isolated(lock1, lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);

 }
 }
 public void rightHand() {
 isolated(lock2,lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

8

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Java’s Object Locks are Reentrant
• Locks are granted on a per-thread basis

— Called reentrant or recursive locks
— Promotes object-oriented concurrent code

• A synchronized block means execution of this code requires the current thread to hold this lock
— If it does — fine
— If it doesn’t — then acquire the lock

• Reentrancy means that recursive methods, invocation of super methods, or local callbacks, don’t deadlock
 public class Widget {
 public synchronized void doSomething() { ... }
 }
 public class LoggingWidget extends Widget {
 public synchronized void doSomething() {
 Logger.log(this + ": calling doSomething()");
 super.doSomething(); // Doesn't deadlock!  

 }  
 }

9

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Implementation of Java synchronized
statements/methods

• Every object has an associated lock
• “synchronized” is translated to matching monitorenter and monitorexit

bytecode instructions for the Java virtual machine
— monitorenter requests “ownership” of the object’s lock
— monitorexit releases “ownership” of the object’s lock

• If a thread performing monitorenter does not gain ownership of the lock
(because another thread already owns it), it is placed in an unordered “entry
set” for the object’s lock

10

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

!
!
!
!
!
!
!
!
!
!

Figure source: http://www.artima.com/insidejvm/ed2/images/fig20-1.gif

Monitors – a Diagrammatic summary

11

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

What if you want to wait for shared state to satisfy
a desired property? (Bounded Buffer Example)

public synchronized void insert(Object item) { // producer
 // TODO: wait till count < BUFFER SIZE
 ++count;
 buffer[in] = item;
 in = (in + 1) % BUFFER SIZE;
 // TODO: notify consumers that an insert has been performed
}
!
public synchronized Object remove() { // consumer
 Object item;
 // TODO: wait till count > 0
 --count;
 item = buffer[out];
 out = (out + 1) % BUFFER SIZE;
 // TODO: notify producers that a remove() has been performed
 return item;
}

12

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

The Java wait() Method
• A thread can perform a wait() method on an object that it owns:

1. the thread releases the object lock
2. thread state is set to blocked
3. thread is placed in the wait set

• Causes thread to wait until another thread invokes the notify() method or the
notifyAll() method for this object.

• Since interrupts and spurious wake-ups are possible, this method should always be
used in a loop e.g.,

 synchronized (obj) {
 while (<condition does not hold>)
 obj.wait();
 ... // Perform action appropriate to condition
 }
• Java’s wait-notify is related to “condition variables” in POSIX threads

13

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Entry and Wait Sets

14

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

The notify() Method
When a thread calls notify(), the following occurs:

1. selects an arbitrary thread T from the wait set
2. moves T to the entry set
3. sets T to Runnable

!
T can now compete for the object’s lock again

15

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Multiple Notifications
• notify() selects an arbitrary thread from the wait set.

—This may not be the thread that you want to be selected.
—Java does not allow you to specify the thread to be selected

• notifyAll() removes ALL threads from the wait set and places them
in the entry set. This allows the threads to decide among
themselves who should proceed next.

• notifyAll() is a conservative strategy that works best when multiple
threads may be in the wait set

16

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

insert() with wait/notify Methods
public synchronized void insert(Object item) {
 while (count == BUFFER SIZE) {
 try {
 wait();
 }
 catch (InterruptedException e) { }
 }
 ++count;
 buffer[in] = item;
 in = (in + 1) % BUFFER SIZE;
 notify();
}

17

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

remove() with wait/notify Methods
public synchronized Object remove() {
 Object item;
 while (count == 0) {
 try {
 wait();
 }
 catch (InterruptedException e) { }
 }
 --count;
 item = buffer[out];
 out = (out + 1) % BUFFER SIZE;
 notify();
 return item;
}

18

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Complete Bounded Buffer using Java
Synchronization

public class BoundedBuffer implements Buffer
{
 private static final int BUFFER SIZE = 5;
 private int count, in, out;
 private Object[] buffer;
 public BoundedBuffer() { // buffer is initially empty
 count = 0;
 in = 0;
 out = 0;
 buffer = new Object[BUFFER SIZE];
 }
 public synchronized void insert(Object item) { // See previous slides
 }
 public synchronized Object remove() { // See previous slides
 }
}

19

