COMP 322: Fundamentals of
Parallel Programming

Lecture 28: Advanced Locking

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
COMP 322 Lecture 28 27 March 2015

@

Locks and Conditions
in java.util.concurrent library

e Atomic variables
— The key to writing lock-free algorithms

e Concurrent Collections:
— Queues, blocking queues, concurrent hash map, ...
— Data structures designed for concurrent environments

‘e Locks and Conditions)
— More flexible synchronization control
. —Read/write locks Y

e Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

e Synchronizers: Semaphore, Latch, Barrier, Exchanger
— Ready made tools for thread coordination

2 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Unit 7.3: Locks

Use of monitor synchronization is just fine for most
applications, but it has some shortcomings

Single wait-set per lock

No way to interrupt or time-out when waiting for a lock

Locking must be block-structured
Inconvenient to acquire a variable number of locks at once

Advanced techniques, such as hand-over-hand locking,
are not possible

Lock objects address these limitations
But harder to use: Need £inally block to ensure release
So if you don’t need them, stick with synchronized

Example of hand-over-hand locking:

* L1.lock() ... L2.lock() ... L1 .unlock() .. L3.lock() ... L2.unlock() ...

3 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

java.util.concurrent.locks.Lock interface

interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock(); // return false if lock is not obtained
boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException;
void unlock();
Condition newCondition();

// can associate multiple condition vars with lock

o java.util.concurrent.locks.Lock interface is implemented by
java.util.concurrent.locks.ReentrantLock class

4 COMP 322, Spring 2015 (V.Sarkar, E.Allen) %,

Simple ReentrantLock() example

Used extensively within java.util.concurrent

final Lock lock = new Reentrantlock() ;

lock.lock () ;
try {
// perform operations protected by lock
}
catch (Exception ex) ({
// restore invariants & rethrow
}
finally ({
lock.unlock() ;

}
Must manually ensure lock is released

5 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

java.util.concurrent.locks.condition interface

o (Can be allocated by calling ReentrantLock.newCondition()
e Supports multiple condition variables per lock

 Methods supported by an instance of condition

— void await() // NOTE: not wait
— Causes current thread to wait until it is signaled or interrupted
— Variants available with support for interruption and timeout

— void signal() // NOTE: not notify
— Wakes up one thread waiting on this condition

— void signalAll() // NOTE: not notifyAll()
- Wakes up all threads waiting on this condition

* For additional details see

— http://download.oracle.com/javase/1.5.0/docs/apil/javalutil/concurrent/locks/
Condition.html

6 COMP 322, Spring 2015 (V.Sarkar, E.Allen) %,

BoundedBuffer implementation using
two conditions, notFull and notEmpty

. class BoundedBuffer {

final Lock lock = new ReentrantLock();

final Condition notFull = lock.newCondition();
final Condition notEmpty = Tock.newCondition(Q);

final Object[] items = new Object[100];
int putptr, takeptr, count;

O 00O N O U1 A W N B

7 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

BoundedBuffer implementation using
two conditions, notFull and notEmpty

10. public void put(Object x) throws InterruptedException
11. {

12. lock.lock();

13. try {

14. while (count == items.length) notFull.await();
15. 1tems[putptr] = X;

16. 1f (++putptr == items.length) putptr = O;
17. ++cCount;

18. notEmpty.signal();

19. } finally {

20. Tock.unTock();

21. }

22. }

8 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

BoundedBuffer implementation using
two conditions, notFull and notEmpty

23. public Object take() throws InterruptedException
24. {

25. lTock.lock();

26. try {

27 . while (count == 0) notEmpty.await();
28. Object x = i1tems[takeptr];

29. 1f (++takeptr == items.length) takeptr = 0;
30. --count;

31. notFull.signal();

32. return X;

33. } finally {

34. lTock.unlock();

35. }

36. }

9 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Reading vs. writing

o Recall that the use of synchronization is to protect interfering accesses
— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:

— If concurrent write/write or read/write might occur, use synchronization to ensure
one-thread-at-a-time

But:

— This is unnecessarily conservative: we could still allow multiple simultaneous
readers

Consider a hashtable with one coarse-grained lock
— So only one thread can perform operations at a time
But suppose:
— There are many simultaneous 1ookup operations
— insert operations are very rare

10 COMP 322, Spring 2015 (V.Sarkar, E.Allen) D

java.util.concurrent.locks.ReadWriteLock
interface

interface ReadWriteLock {
Lock readLock() ;
Lock writeLock() ;
}
 Even though the interface appears to just define a pair of locks, the
semantics of the pair of locks is coupled as follows
— Case 1: a thread has successfully acquired writeLock().lock()
— No other thread can acquire readLock() or writeLock()
— Case 2: no thread has acquired writeLock().lock()
— Multiple threads can acquire readLock()
— No other thread can acquire writeLock()
o java.util.concurrent.locks.ReadWriteLock interface is implemented
by java.util.concurrent.locks.ReadWriteReentrantLock class

11 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Example code

class Hashtable<K,V> {

// coarse-grained, one lock for table

ReadWritelLock lk = new ReentrantReadWriteLock();

V lookup (K key) {
int bucket = hasher(key);
lk.readLock().lock(); // only blocks writers
.. read array[bucket] ..
lk.readLock () .unlock () ;

}

void insert (K key, V val) {
int bucket = hasher(key);
lk.writeLock().lock(); // blocks readers and writers
.. write array[bucket] ..
lk.writeLock () .unlock();

}

COMP 322, Spring 2015 (V.Sarkar, E.Allen) ¢

12

