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Worksheet #30: Characterizing Solutions to 
the Dining Philosophers Problem 

For the five solutions studied in Lecture #29, indicate in the table below 
which of the following conditions are possible and why: 

1. Deadlock: when all philosopher tasks are blocked 
2. Livelock: when all philosopher tasks are executing (i.e., no philosopher is 

blocked) but ALL philosophers are starved (never get to eat) 
3. Starvation: when one or more philosophers are starved (never get to eat) 
4. Non-Concurrency: when more than one philosopher cannot eat at the 

same time, even when resources are available i.e., not being used 
!

NOTES:  
• Deadlock implies Starvation and Non-Concurrency 
• Livelock implies Starvation and Non-Concurrency
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Deadlock Livelock Starvation Non-
concurrency

Solution 1: 
synchronized

Yes No Yes Yes

Solution 2:  
tryLock/
unLock

No Yes Yes Yes

Solution 3: 
isolated

No No Yes Yes

Solution 4: 
object-based 
isolation

No No Yes No

Solution 5: 
semaphores

No No No No
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Organization of a Distributed-Memory 
Multiprocessor

Figure (a) 
• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm) 
• Processors P0 … Pm communicate via an interconnection network which could be 

standard TCP/IP (e.g., for Map-Reduce) or specialized for high performance 
communication (e.g., for scientific computing) 

Figure (b) 
• Each processor node consists of a processor, memory, and a Network Interface Card 

(NIC) connected to a router node (R) in the interconnect           
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Processors communicate by sending messages via an interconnect
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Organization of a Shared-Memory Multicore 
Symmetric Multiprocessor (SMP)

Regs

L1  
d-cache

L1  
i-cache

L2 unified cache

Core A

L3 unified cache 

Main memory

Regs

L1  
d-cache

Core B

L1  
i-cache

Regs

L1  
d-cache

L1  
i-cache

L2 unified cache

Core C

Regs

L1  
d-cache

Core D

L1  
i-cache
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Cores communicate 
by reading and writing 
data in a “shared memory”

• Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core 
processor chip 

—A STIC node contains TWO such chips, for a total of 8 cores
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What is the cost of a Memory Access? !
An example Memory Hierarchy

Registers
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  RAM)
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Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx6
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Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980 !
$/MB  8,000 880 100 30 1 0.1 0.06 130,000 
access (ns)  375 200 100 70 60 50 40 9 
typical size (MB)  0.064 0.256 4 16 64 2,000 8,000 125,000 

Storage Trends

DRAM

SRAM

Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980 !
$/MB  500 100 8 0.30 0.01 0.005 0.0003 1,600,000 
access (ms) 87 75 28 10 8 4 3 29 
typical size (MB)  1 10 160 1,000 20,000 160,000 1,500,000 1,500,000

Disk

Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980 !
$/MB  19,200 2,900 320 256 100 75 60 320 
access (ns)  300 150 35 15 3 2 1.5 200

7 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Cache Memories
• Cache memories are small, fast SRAM-based memories managed 

automatically in hardware.  
—Hold frequently accessed blocks of main memory 

• CPU looks first for data in caches (e.g., L1, L2, and L3), then in 
main memory. 

• Typical system structure:

8 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Examples of Caching in the Hierarchy

Ultimate goal: create a large pool of storage with average cost 
per byte that approaches that of the cheap storage near the 
bottom of the hierarchy, and average latency that approaches 
that of  fast storage near the top of the hierarchy.

9 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

Ideally one would desire an indefinitely large memory 
capacity such that any particular … word would be immediately 

available. … We are … forced to recognize the possibility of constructing a 
hierarchy of memories, each of which has greater capacity than the preceding 
but which is less quickly accessible.  

A. W. Burks, H. H. Goldstine, and J. von Neumann  
Preliminary Discussion of the Logical Design of an  

Electronic Computing Instrument (1946)
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Locality
• Principle of Locality:  

—Empirical observation: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently 

!
• Temporal locality:   

—Recently referenced items are likely  
to be referenced again in the near future 

!
• Spatial locality:   

—Items with nearby addresses tend  
to be referenced close together in time 

—A Java programmer can only influence spatial locality at the intra-object 
level 

– The garbage collector and memory management system determines 
inter-object placement

10 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Locality Example

• Data references 
—Reference array elements in succession 

(stride-1 reference pattern). 
—Reference variable sum each iteration. 

• Instruction references 
—Reference instructions in sequence. 
—Cycle through loop repeatedly. 

sum = 0; 
for (i = 0; i < n; i++) 
 sum += a[i];    
return sum;

Spa0al	
  locality

Temporal	
  locality

Spa0al	
  locality
Temporal	
  locality

11 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Memory Hierarchy in a Multicore 
Processor

Regs
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Core-pair

• Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core 
processor chip 

—A STIC node contains TWO such chips, for a total of 8 cores
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Programmer Control of Task 
Assignment to Processors

• The parallel programming constructs that we’ve studied thus far 
result in tasks that are assigned to processors dynamically by the 
HJ runtime system 
— Programmer does not worry about task assignment details 

• Sometimes, programmer control of task assignment can lead to 
significant performance advantages due to improved locality 

• Motivation for HJ “places” 
— Provide the programmer a mechanism to restrict task execution to a subset 

of processors for improved locality 
— Current HJlib implementation supports one level of locality via places, but 

future HJlib versions will support hierarchical places

13
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Places in HJlib

HJ Places

Java Worker Threads

HJ programmer defines mapping from 
HJ tasks to set of places

HJ Tasks

HJ runtime defines mapping from places to 
one or more worker Java threads per place  
!
The API calls 
HjSystemProperty.numPlaces.set(p);                
HjSystemProperty.numWorkers.set(w); 
!
when executing an HJ program can be used to 
specify 
   p, the number of places 
   w, the number of worker threads per place 
we will abbreviate this as p:w

OS threads

Processor Cores

14
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Example of 4:2 option on an 8-core node 
(4 places w/ 2 workers per place)

Regs

L1  L1  

L2 unified cache

Core A

Regs

L1  

Core B

L1  

Regs

L1  L1  

L2 unified cache
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Regs

L1  

Core D

L1  

Regs

L1  L1  

L2 unified cache

Core E

Regs

L1  

Core F

L1  

Regs

L1  L1  

L2 unified cache

Core G

Regs

L1  

Core H

L1  
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Place 0 Place 1

Place 2

Place 1Place 1

Place 3
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Places in HJlib
here() = place at which current task is executing 
numPlaces() = total number of places (runtime constant) 

Specified by value of p in runtime option: 
HjSystemProperty.numPlaces.set(p); 

place(i) =  place corresponding to index i 
<place-expr>.toString() returns a string of the form “place(id=0)” 
<place-expr>.id() returns the id of the place as an int 
asyncAt(P, () -> S) 
• Creates new task to execute statement S at place P 
• async(() -> S) is equivalent to asyncAt(here(), () -> S)!
• Main program task starts at place(0) 
!
Note that here() in a child task refers to the place P at which the child task is executing, not the place 

where the parent task is executing

16
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Example of 4:2 option on an 8-core node 
(4 places w/ 2 workers per place)

Place 1

Regs

L1 L1 

L2 unified cache

Core A

Regs

L1 

Core B

L1 

Regs

L1 L1 

L2 unified cache
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Regs

L1 

Core D

L1 

Regs

L1 L1 

L2 unified cache

Core E

Regs

L1 

Core F

L1 

Regs

L1 L1 

L2 unified cache

Core G

Regs

L1 

Core H

L1 

Place 0 Place 1

Place 2 Place 3

// Main program starts at place 0!
asyncAt(place(0), () -> S1); !
asyncAt(place(0), () -> S2);

asyncAt(place(1), () -> S3); !
asyncAt(place(1), () -> S4);!
asyncAt(place(1), () -> S5);

asyncAt(place(2), () -> S6);!
asyncAt(place(2), () -> S7);!
asyncAt(place(2), () -> S8);

asyncAt(place(3), () -> S9);!
asyncAt(place(3), () -> S10);
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Example of 1:8 option 
(1 place w/ 8 workers per place)
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Regs

L1 L1 

L2 unified cache

Core A

Regs

L1 

Core B

L1 

Regs

L1 L1 

L2 unified cache

Core C

Regs

L1 

Core D

L1 

Regs

L1 L1 

L2 unified cache

Core E

Regs

L1 

Core F

L1 

Regs

L1 L1 

L2 unified cache

Core G

Regs

L1 

Core H

L1 

Place 0

All async’s run at place 0 when there’s only one place!
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HJ program with places (pseudocode)

19
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Chunked Fork-Join Iterative  
Averaging Example with Places

1.  public void runDistChunkedForkJoin(!
2.      int iterations, int numChunks, Dist dist) {!
3.    // dist is a user-defined map from int to HjPlace!
4.    for (int iter = 0; iter < iterations; iter++) {!
5.      finish(() -> { !
6.        forseq (0, numChunks - 1, (jj) -> { !
7.          asyncAt(dist.get(jj), () -> {!
8.            forseq (getChunk(1, n, numChunks, jj), (j) -> {!
9.              myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0; !
10.            } !
11.         }); !
12.       });!
13.     });!
14.      double[] temp = myNew; myNew = myVal; myVal = temp; !
15.   } // for iter!
16. }

•Chunk jj is always executed in the same place for each iter 
•Method runDistChunkedForkJoin can be called with different values 
of distribution parameter d

20
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Analyzing Locality of Fork-Join Iterative Averaging 
Example with Places

21
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Block Distribution
• A block distribution splits the index region into contiguous 

subregions, one per place, while trying to keep the subregions as 
close to equal in size as possible.  

• Block distributions can improve the performance of parallel loops 
that exhibit spatial locality across contiguous iterations. 

• Example: dist.get(index) for a block distribution on 4 places, when 
index is in the range, 0…15

22
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Distributed Parallel Loops
• The pseudocode below shows the typical pattern used to iterate 

over an input region r, while creating one async task for each 
iteration p at the place dictated by distribution d i.e., at place 
d.get(p).  

• This pattern works correctly regardless of the rank and contents of 
input region r and input distribution d i.e., it is not constrained to 
block distributions

23



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Cyclic Distribution
• A cyclic distribution “cycles” through places 0 … place.MAX 

PLACES − 1 when spanning the input region 
• Cyclic distributions can improve the performance of parallel loops 

that exhibit load imbalance 
• Example: dist.get(index) for a cyclic distribution on 4 places, when 

index is in the range, 0…15
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