
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 31: Task Affinity with Places

!
(Start of Module 3 on Distribution & Locality)

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 31 6 April 2015

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #30: Characterizing Solutions to
the Dining Philosophers Problem

For the five solutions studied in Lecture #29, indicate in the table below
which of the following conditions are possible and why:

1. Deadlock: when all philosopher tasks are blocked
2. Livelock: when all philosopher tasks are executing (i.e., no philosopher is

blocked) but ALL philosophers are starved (never get to eat)
3. Starvation: when one or more philosophers are starved (never get to eat)
4. Non-Concurrency: when more than one philosopher cannot eat at the

same time, even when resources are available i.e., not being used
!

NOTES:
• Deadlock implies Starvation and Non-Concurrency
• Livelock implies Starvation and Non-Concurrency

2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)3

Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Yes No Yes Yes

Solution 2:
tryLock/
unLock

No Yes Yes Yes

Solution 3:
isolated

No No Yes Yes

Solution 4:
object-based
isolation

No No Yes No

Solution 5:
semaphores

No No No No

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Organization of a Distributed-Memory
Multiprocessor

Figure (a)
• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)
• Processors P0 … Pm communicate via an interconnection network which could be

standard TCP/IP (e.g., for Map-Reduce) or specialized for high performance
communication (e.g., for scientific computing)

Figure (b)
• Each processor node consists of a processor, memory, and a Network Interface Card

(NIC) connected to a router node (R) in the interconnect

4

Processors communicate by sending messages via an interconnect

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Organization of a Shared-Memory Multicore
Symmetric Multiprocessor (SMP)

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

5

Cores communicate
by reading and writing
data in a “shared memory”

• Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core
processor chip

—A STIC node contains TWO such chips, for a total of 8 cores

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

What is the cost of a Memory Access? !
An example Memory Hierarchy

Registers

L1	
 cache
	
 (Sta0c	
 RAM)

Main	
 memory
(Dynamic	
 RAM)

Local	
 secondary	
 storage
(local	
 disks)

Larger,	
 	

slower,	

cheaper	

per	
 byte

Remote	
 secondary	
 storage
(tapes,	
 distributed	
 file	
 systems,	
 Web	
 servers)

Local	
 disks	
 hold	
 files	

retrieved	
 from	
 disks	
 on	

remote	
 network	
 servers

Main	
 memory	
 holds	
 disk	
 blocks	

retrieved	
 from	
 local	
 disks

L2	
 cache
(Sta0c	
 RAM)

L1	
 cache	
 holds	
 cache	
 lines	
 retrieved	

from	
 L2	
 cache

CPU	
 registers	
 hold	
 words	
 retrieved	

from	
 L1	
 cache

L2	
 cache	
 holds	
 cache	
 lines	

retrieved	
 from	
 main	
 memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per	
 byte

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx6

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980 !
$/MB 8,000 880 100 30 1 0.1 0.06 130,000
access (ns) 375 200 100 70 60 50 40 9
typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125,000

Storage Trends

DRAM

SRAM

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980 !
$/MB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms) 87 75 28 10 8 4 3 29
typical size (MB) 1 10 160 1,000 20,000 160,000 1,500,000 1,500,000

Disk

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980 !
$/MB 19,200 2,900 320 256 100 75 60 320
access (ns) 300 150 35 15 3 2 1.5 200

7 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2014 (V.Sarkar)

Cache Memories
• Cache memories are small, fast SRAM-based memories managed

automatically in hardware.
—Hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), then in
main memory.

• Typical system structure:

8 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2014 (V.Sarkar)

Examples of Caching in the Hierarchy

Ultimate goal: create a large pool of storage with average cost
per byte that approaches that of the cheap storage near the
bottom of the hierarchy, and average latency that approaches
that of fast storage near the top of the hierarchy.

9 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

Ideally one would desire an indefinitely large memory
capacity such that any particular … word would be immediately

available. … We are … forced to recognize the possibility of constructing a
hierarchy of memories, each of which has greater capacity than the preceding
but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann
Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument (1946)

COMP 322, Spring 2014 (V.Sarkar)

Locality
• Principle of Locality:

—Empirical observation: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

!
• Temporal locality:

—Recently referenced items are likely  
to be referenced again in the near future

!
• Spatial locality:

—Items with nearby addresses tend  
to be referenced close together in time

—A Java programmer can only influence spatial locality at the intra-object
level

– The garbage collector and memory management system determines
inter-object placement

10 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2014 (V.Sarkar)

Locality Example

• Data references
—Reference array elements in succession

(stride-1 reference pattern).
—Reference variable sum each iteration.

• Instruction references
—Reference instructions in sequence.
—Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spa0al	
 locality

Temporal	
 locality

Spa0al	
 locality
Temporal	
 locality

11 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Memory Hierarchy in a Multicore
Processor

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

12

Core-pair

• Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core
processor chip

—A STIC node contains TWO such chips, for a total of 8 cores

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Programmer Control of Task
Assignment to Processors

• The parallel programming constructs that we’ve studied thus far
result in tasks that are assigned to processors dynamically by the
HJ runtime system
— Programmer does not worry about task assignment details

• Sometimes, programmer control of task assignment can lead to
significant performance advantages due to improved locality

• Motivation for HJ “places”
— Provide the programmer a mechanism to restrict task execution to a subset

of processors for improved locality
— Current HJlib implementation supports one level of locality via places, but

future HJlib versions will support hierarchical places

13

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Places in HJlib

HJ Places

Java Worker Threads

HJ programmer defines mapping from
HJ tasks to set of places

HJ Tasks

HJ runtime defines mapping from places to
one or more worker Java threads per place
!
The API calls
HjSystemProperty.numPlaces.set(p);
HjSystemProperty.numWorkers.set(w);
!
when executing an HJ program can be used to
specify
 p, the number of places
 w, the number of worker threads per place
we will abbreviate this as p:w

OS threads

Processor Cores

14

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example of 4:2 option on an 8-core node
(4 places w/ 2 workers per place)

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

15

Place 0 Place 1

Place 2

Place 1Place 1

Place 3

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Places in HJlib
here() = place at which current task is executing
numPlaces() = total number of places (runtime constant)

Specified by value of p in runtime option:
HjSystemProperty.numPlaces.set(p);

place(i) = place corresponding to index i
<place-expr>.toString() returns a string of the form “place(id=0)”
<place-expr>.id() returns the id of the place as an int
asyncAt(P, () -> S)
• Creates new task to execute statement S at place P
• async(() -> S) is equivalent to asyncAt(here(), () -> S)!
• Main program task starts at place(0)
!
Note that here() in a child task refers to the place P at which the child task is executing, not the place

where the parent task is executing

16

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example of 4:2 option on an 8-core node
(4 places w/ 2 workers per place)

Place 1

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0 Place 1

Place 2 Place 3

// Main program starts at place 0!
asyncAt(place(0), () -> S1); !
asyncAt(place(0), () -> S2);

asyncAt(place(1), () -> S3); !
asyncAt(place(1), () -> S4);!
asyncAt(place(1), () -> S5);

asyncAt(place(2), () -> S6);!
asyncAt(place(2), () -> S7);!
asyncAt(place(2), () -> S8);

asyncAt(place(3), () -> S9);!
asyncAt(place(3), () -> S10);

17

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example of 1:8 option
(1 place w/ 8 workers per place)

18

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0

All async’s run at place 0 when there’s only one place!

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

HJ program with places (pseudocode)

19

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Chunked Fork-Join Iterative
Averaging Example with Places

1. public void runDistChunkedForkJoin(!
2. int iterations, int numChunks, Dist dist) {!
3. // dist is a user-defined map from int to HjPlace!
4. for (int iter = 0; iter < iterations; iter++) {!
5. finish(() -> { !
6. forseq (0, numChunks - 1, (jj) -> { !
7. asyncAt(dist.get(jj), () -> {!
8. forseq (getChunk(1, n, numChunks, jj), (j) -> {!
9. myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0; !
10. } !
11. }); !
12. });!
13. });!
14. double[] temp = myNew; myNew = myVal; myVal = temp; !
15. } // for iter!
16. }

•Chunk jj is always executed in the same place for each iter
•Method runDistChunkedForkJoin can be called with different values
of distribution parameter d

20

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Analyzing Locality of Fork-Join Iterative Averaging
Example with Places

21

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Block Distribution
• A block distribution splits the index region into contiguous

subregions, one per place, while trying to keep the subregions as
close to equal in size as possible.

• Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

• Example: dist.get(index) for a block distribution on 4 places, when
index is in the range, 0…15

22

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Distributed Parallel Loops
• The pseudocode below shows the typical pattern used to iterate

over an input region r, while creating one async task for each
iteration p at the place dictated by distribution d i.e., at place
d.get(p).

• This pattern works correctly regardless of the rank and contents of
input region r and input distribution d i.e., it is not constrained to
block distributions

23

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Cyclic Distribution
• A cyclic distribution “cycles” through places 0 … place.MAX

PLACES − 1 when spanning the input region
• Cyclic distributions can improve the performance of parallel loops

that exhibit load imbalance
• Example: dist.get(index) for a cyclic distribution on 4 places, when

index is in the range, 0…15

24

