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Worksheet #31 solution: impact of distribution 
on parallel completion time (rather than locality)

1.  public void sampleKernel(!
2.      int iterations, int numChunks, Distribution dist) {!
3.    for (int iter = 0; iter < iterations; iter++) {!
4.      finish(() -> { !
5.        forseq (0, numChunks - 1, (jj) -> { !
6.          asyncAt(dist.get(jj), () -> {!
7.            doWork(jj);!
8.            // Assume that time to process chunk jj = jj units !
9.         }); !
10.       });!
11.     });!
12.   } // for iter!
13. } // sample kernel

•Assume an execution with n places, each place with one worker thread 
•Will a block or cyclic distribution for dist have a smaller abstract 
completion time, assuming that all tasks on the same place are serialized 
with one worker per place? 
!
Answer: Cyclic distribution because it leads to better load balance (locality 
was not a consideration in this problem)
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Spark and Iterative Map/Reduce
• After experience with Map/Reduce, users started realizing that 

a much larger class of algorithms could be expressed as an 
iterative sequence of map/reduce operations 
—Many machine learning algorithms fall into this category 

• Tools started to emerge to enable easy expression of multiple 
map/reduce operations, along with smart scheduling 

• But it is also useful to interactively query large datasets 

• Apache Spark: General purpose functional programming over a 
cluster 
—Caches results of map/reduce operations in memory so they can be 

used on subsequent iterations 
—Tends to be 10-100 times faster than Hadoop for many applications
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!
Apache Spark

• Distributed computing framework based on the Scala 
programming language (on the JVM) 

• Multiple JVMs (one per machine in a cluster) are coordinated 
by a master JVM
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The Scala Programming Language
• Scala is a programming language that combines object-oriented 

and functional language features 

• Scala comes from “SCAlable LAnguage”: Intended to have the 
feel of a scripting language (read-eval-print loop, type 
inference) but support for programming in the large (efficient 
JVM-based implementation, powerful static type system, etc.) 

• Many object-oriented design patterns are natively supported 
(singletons via object definitions, visitors via pattern matching) 

• Deep interoperability with Java: Classes can be freely mixed 
between languages 

• Full-fledged functional language: Anonymous functions, higher 
order functions, efficient immutable data structures, currying
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The Scala Programming Language
• Small example Scala program: 
!
!
object Main {!
  def main(args: Array[String]) {!
    val result = for (i <- 1:10) yield i*i!
    println("Squares: " + result.toString)!
  }!
}!
!

• For more exposure to Scala and functional programming check 
out Comp 311 this Fall
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Spark: Resilient Distributed Datasets
• The key construct in Spark is the Resilient Distributed Dataset 

(RDD) 

• An RDD is an immutable collection, distributed in a reliable way 
over the machines in a cluster 

• The types of the elements in the RDD can be arbitrary 
elements 

• If the elements are pairs, then the RDD acts like a key-value 
map or table 

• Computations on an RDD (including Map/Reduce) can be 
expressed as functional programming operations
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!
Apache Spark

• Resilience is achieved without significant data replication: 
• The transformations used to compute an RDD are 

necessarily shared across an nodes, enabling efficient 
recompilation of elements 

• Transformations are not applied until forced (an advantage 
of immutability)
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Advantages of Immutability
• The distributed nature of RDDs is not evident in the 

programming model 

• RDD elements can be replicated for fault tolerance 

• Purely functional operations can be easily defined on RDDs 

• The runtime has great flexibility in scheduling operations on 
RDDs
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!
Wordcount in Apache Spark

val file = spark.textFile(“hdfs://...") 
!
val counts = file.flatMap(line => line.split(" ")) 
                 .map(word => (word, 1)) 
                 .reduceByKey((x,y) => x + y) 
!
counts.saveAsTextFile("hdfs://...")
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!
Wordcount in Apache Spark

val file = spark.textFile(“hdfs://...") 
!
val counts = file.flatMap(line => line.split(" ")) 
                 .map(word => (word, 1)) 
                 .reduceByKey(_ + _) 
!
counts.saveAsTextFile("hdfs://...")
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!
Wordcount in Apache Spark

val file = spark.textFile(“hdfs://...") 
!
val counts = file.flatMap(line => line.split(" ")) 
                 .map(word => (word, 1)) 
                 .reduceByKey(_ + _) 
!
counts.saveAsTextFile("hdfs://...") 
!
!
x.flatMap(f) = x.map(f).flatten() 
!
!
!
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(“this is a line”,  
 “this is another line”, 
 “this is yet another line”) 
.map(line => line.split()) 
.flatten() 
!
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((“this”, “is”, “a”, “line”), 
 (“this”, “is”, “another”, “line”), 
 (“this”, “is”, “yet”, “another”, “line”)) 
.flatten() 
!

14

!
Wordcount in Apache Spark



COMP 322, Spring 2014 (V.Sarkar)

(“this”, “is”, “a”, “line”, “this”, “is”, 
 “another”, “line”, “this”, “is”, “yet”, 
 “another”, “line”)
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!
Wordcount in Apache Spark

val file = spark.textFile(“hdfs://...") 
!
val counts = file.flatMap(line => line.split(" ")) 
                 .map(word => (word, 1)) 
                 .reduceByKey(_ + _) 
!
counts.saveAsTextFile("hdfs://...")
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(“this”, “is”, “a”, “line”, “this”, “is”, 
 “another”, “line”, “this”, “is”, “yet”, 
 “another”, “line”) 
.map(word => (word, 1)) 
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((“this”,1), (“is”,1), (“a”,1), (“line”,1),    
 (“this”,1), (“is”,1), (“another”,1),  
 (“line”,1), (“this”,1), (“is”,1),  
 (“yet”,1),(“another”,1), (“line”,1))
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!
Wordcount in Apache Spark

val file = spark.textFile(“hdfs://...") 
!
val counts = file.flatMap(line => line.split(" ")) 
                 .map(word => (word, 1)) 
                 .reduceByKey(_ + _) 
!
counts.saveAsTextFile("hdfs://...") 
!
!
x.reduceByKey(f) = x.groupByKey()  
         .map(xs => 
            xs.reduce(f))
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((“this”,1), (“is”,1), (“a”,1), (“line”,1),    
 (“this”,1), (“is”,1), (“another”,1),  
 (“line”,1), (“this”,1), (“is”,1),  
 (“yet”,1),(“another”,1), (“line”,1)) 
.groupByKey().map(xs =>  
        xs.reduce 
                       (a,b => a+b) 
!
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((“this”, (1,1,1), 
 (“is”, (1,1,1), 
 (“a”, (1)), 
 (“line”, (1,1,1)),  
 (“another”, (1,1)),  
 (“yet”, (1))).map(xs => …) 
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((“this”, (1,1,1).reduce(a,b => a+b), 
 (“is”, (1,1,1).reduce(a,b => a+b), 
 (“a”, (1)).reduce(a,b => a+b), 
 (“line”, (1,1,1)).reduce(a,b => a+b),  
 (“another”, (1,1)).reduce(a,b => a+b),  
 (“yet”, (1)).reduce(a,b => a+b))
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((“this”, 3), (“is”, 3), (“a”, 1),  
 (“line”, 3), (“another”, 2), (“yet”, 1)) 
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Lazy Evaluation of RDDs
• Map operations (transformations) on RDDs are applied “lazily”: 

—The sequence of operations are built up on elements as a closure 
—The closure is not applied until forced by a reduce operation 

(actions) 

• Many other operations are available on RDDs: 
— map, reduce, sample, groupByKey, reduceByKey, join, … 

• Because RDDs are immutable, all the operations from purely 
functional programming can be applied and parallelized in a 
straightforward way
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Iterative Map/Reduce Example: Logistic 
Regression

• Given a collection of examples with various attributes and a 
label, we wish to predict the labels for new examples: 

!
• <height, weight, age, systolic bp, diastolic bp>: medicine? 

!
• <170 cm, 72 kg, 52, 120, 80>: YES 

• <150 cm, 60 kg, 34 years, 130, 70> : NO 

• … 

!
!
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Iterative Map/Reduce Example: Logistic 
Regression

• We can view the examples as vectors in a high-dimensional 
vector space 

• The problem of labeling yes/no can be solved by finding the 
best hyperplane that divides the given examples according to 
their labels 

• This new hyperplane can be used to predict labels for new 
examples
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Iterative Map/Reduce Example: Logistic 
Regression

• We can view the examples as vectors in a high-dimensional 
vector space 

• The problem of labeling yes/no can be solved by finding the 
best hyperplane that divides the given examples according to 
their labels 

• This new hyperplane can be used to predict labels for new 
examples
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Iterative Map/Reduce Example: Logistic 
Regression

val points = spark.textFile(…).map(parsePoint).cache() 
!
var w = Vector.random(D) // current separating plane 
!
for (i <- 1 to ITERATIONS) { 
  val gradient = points.map(p => 
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x 
  ).reduce(_ + _) 
!
  w -= gradient 
} 
!
println("Final separating plane: " + w) 
!!
Example presented in: !
Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing." 
Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX 
Association, 2012.
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Worksheet #32: impact of distribution on parallel 
completion time (rather than locality)
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val points = spark.textFile(…).map(parsePoint).cache() 
!
var w = Vector.random(D) // current separating plane 
!
for (i <- 1 to ITERATIONS) { 
  val gradient = points.map(doWork(1)).reduce(_ + _) 
!
  w -= gradient 
} 
!
println("Final separating plane: " + w)

Consider the above simplified regression program. 
Let each doWork operation cost 1 unit of work. 
What is the total work? What is the CPL?


