COMP 322: Fundamentals of
Parallel Programming

Lecture 32: Apache Spark framework for
cluster computing

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 21 14 March 2014

@

Worksheet #31 solution: impact of distribution
on parallel completion time (rather than locality)

1. public void sampleKernel (

2. int iterations, int numChunks, Distribution dist) {
3. for (int iter = 0; iter < iterations; iter++) {

4. finish(() -> {

5. forseq (0, numChunks - 1, (jj) -> {

6. asyncAt (dist.get(jj), () -> {

7. doWork(jj);

8. // Assume that time to process chunk jj = jj units
9. })i

10. })i

11.)i

12. } // for iter

13. } // sample kernel]
- Assume an execution with n places, each place with one worker thread

 Will a block or cyclic distribution for dist have a smaller abstract
completion time, assuming that all tasks on the same place are serialized
with one worker per place?

Answer: Cyclic distribution because it leads to better load balance (locality
was not a consideration in this problem)

2 COMP 322, Spring 2015 (V.Sarkar, E.Allen) @

Spark and Iterative Map/Reduce

« After experience with Map/Reduce, users started realizing that
a much larger class of algorithms could be expressed as an
iterative sequence of map/reduce operations

—Many machine learning algorithms fall into this category

* Tools started to emerge to enable easy expression of multiple
map/reduce operations, along with smart scheduling

« But it is also useful to interactively query large datasets

« Apache Spark: General purpose functional programming over a
cluster

—Caches results of map/reduce operations in memory so they can be
used on subsequent iterations

—Tends to be 10-100 times faster than Hadoop for many applications

3 COMP 322, Spring 2013 (V.Sarkar)

Apache Spark

 Distributed computing framework based on the Scala

programming language (on the JVM)
e Multiple JVMs (one per machine in a cluster) are coordinated

by a master JVM

Master
JVM 1 JVM 2 JVM 3 JVM 4 JVM 5

4 COMP 322, Spring 2014 (V.Sarkar) &)

The Scala Programming Language

Scala is a programming language that combines object-oriented
and functional language features

Scala comes from "SCAlable LAnguage”: Intended to have the
feel of a scripting language (read-eval-print loop, type

inference) but support for programming in the large (efficient
JVM-based implementation, powerful static type system, etc.)

Many object-oriented design patterns are natively supported
(singletons via object definitions, visitors via pattern matching)

Deep interoperability with Java: Classes can be freely mixed
between languages

Full-fledged functional language: Anonymous functions, higher
order functions, efficient immutable data structures, currying

5
COMP 322, Spring 2014 (V.Sarkar) %

The Scala Programming Language

 Small example Scala program:

object Main {
def main(args: Array[String]) {
val result = for (i <- 1:10) yield i*1i
println("Squares: " + result.toString)
}
}

* For more exposure to Scala and functional programming check
out Comp 311 this Fall

6 COMP 322, Spring 2014 (V.Sarkar) &)

Spark: Resilient Distributed Datasets

The key construct in Spark is the Resilient Distributed Dataset
(RDD)

An RDD is an immutable collection, distributed in a reliable way
over the machines in a cluster

The types of the elements in the RDD can be arbitrary
elements

If the elements are pairs, then the RDD acts like a key-value
map or table

Computations on an RDD (including Map/Reduce) can be
expressed as functional programming operations

COMP 322, Spring 2014 (V.Sarkar)

Apache Spark

 Resilience is achieved without significant data replication:
 The transformations used to compute an RDD are
necessarily shared across an nodes, enabling efficient
recompilation of elements
- Transformations are not applied until forced (an advantage
of immutability)

Master

|

{alblcldlelflglh} {iljlklllmlnlolplq} {r‘lsl.rIUIVIWIXIYIz}
[transformations] [transformations] [transformations]

8 COMP 322, Spring 2014 (V.Sarkar) &)

Advantages of Immutability

The distributed nature of RDDs is not evident in the
programming model

RDD elements can be replicated for fault tolerance
Purely functional operations can be easily defined on RDDs

The runtime has great flexibility in scheduling operations on
RDDs

COMP 322, Spring 2014 (V.Sarkar)

Wordcount in Apache Spark
val file = spark.textFile(“hdfs://...")

val counts = file.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey((x,y) => x + vy)

counts.saveAsTextFile("hdfs://...")

10 COMP 322, Spring 2014 (V.Sarkar) 2D

Wordcount in Apache Spark

val file = spark.textFile(“hdfs://...")

val counts = file.flatMap(line => line.split(" "))
.map(word => (word, 1))
. reduceByKey(_ +)

counts.saveAsTextFile("hdfs://...")

11 COMP 322, Spring 2014 (V.Sarkar) 2D

Wordcount in Apache Spark
val file = spark.textFile(“hdfs://...")

val counts = file.flatMap(line => line.split(" "))
.map(word => (word, 1))
. reduceByKey(_ +)

counts.saveAsTextFile("hdfs://...")

x.flatMap(f) = x.map(f).flatten()

12 COMP 322, Spring 2014 (V.Sarkar) D

Wordcount in Apache Spark

(“this is a line”,

“this 1s another Lline”,
“this is yet another line”)
.map(line => line.split())

. flatten()

13 COMP 322, Spring 2014 (V.Sarkar) 2

Wordcount in Apache Spark

[

{ i - ”n i n

((“this”, “is”, "“a”, “line”),
(u.t,]:!_sn’ “:!.S", “anOther", M'Linen)’ |
(lltqlS"’ lllS"’ llyet"’ llanother"’ “-l_lne"))
.flatten()

14 COMP 322, Spring 2014 (V.Sarkar) A

Wordcount in Apache Spark

(llthiS"’ lliS"’ lla"’ ll'Line"’ ll.thiS"’ lliS"’
llanother"’ ll'Line"’ llthiS"’ lliS"’ llyet"’
'Y 114 'Y - 144

another”, “line”)

15 COMP 322, Spring 2014 (V.Sarkar) 2

Wordcount in Apache Spark
val file = spark.textFile(“hdfs://...")

val counts = file.flatMap(line => line.split(" "))
.map(word => (word, 1))
. reduceByKey(_ +)

counts.saveAsTextFile("hdfs://...")

16 COMP 322, Spring 2014 (V.Sarkar) D

Wordcount in Apache Spark

(“this”, “is”, "“a”, “line”, “this”, “is”,
“another”, “line”, “this”, “1is”, “yet”,
“another”, “line”)

.map(word => (word, 1))

17 COMP 322, Spring 2014 (V.Sarkar) 72

Wordcount in Apache Spark

((“this”,1), (“is”,1), (“a”,1), (“line”,1),

(“this”,1), (“is”,1), (“another”,1),
(“line”,1), (“this”,1), (“is”,1),
(“yet”,1), (“another”,1), (“line”,1))

18 COMP 322, Spring 2014 (V.Sarkar)

=

Wordcount in Apache Spark
val file = spark.textFile(“hdfs://...")

val counts = file.flatMap(line => line.split(" "))
.map(word => (word, 1))

. reduceByKey(_ +)
counts.saveAsTextFile("hdfs://...")

X.reduceByKey(f) = x.groupByKey()
.map(xs =>
xs.reduce(f))

19 COMP 322, Spring 2014 (V.Sarkar) 2D

Wordcount in Apache Spark

((“this”,1), (“is”,1), (“a”,1), (“line”,1),
(“this”,1), (“is”,1), (“another”,1),
(“line”,1), (“this”,1), (“is”,1),
(“yet”,1), (“another”,1), (“line”,1))
. groupByKey().map(xs =>
XS.reduce

(a,b => a+b)

20 COMP 322, Spring 2014 (V.Sarkar)

AN

Wordcount in Apache Spark

“this”, (1,1,1),
“is”, (1,1,1),

line”, (1,1,1)),
“another”, (1,1)),
“yet”, (1))) map(xs => ..)

21 COMP 322, Spring 2014 (V.Sarkar) 2

Wordcount in Apache Spark

((“this”, (1,1,1).reduce(a,b => a+b),

i

(

(“is”, (1,1,1).reduce(a,b => a+b),
(“a”, (1)).reduce(a,b => a+b),
(“line”, (1,1,1)).reduce(a,b => a+b),
(

(

i

i

yet”, (1)).reduce(a,b => a+b))

another”, (1,1)).reduce(a,b => a+b),

22

COMP 322, Spring 2014 (V.Sarkar)

Wordcount in Apache Spark

((“thiS", 3)’ (“iS", 3)’ (uan’ 1)’
(“line”, 3), (“another”, 2), (“yet”, 1))

A
23 COMP 322, Spring 2014 (V.Sarkar) 72>

24

Lazy Evaluation of RDDs

Map operations (transformations) on RDDs are applied “lazily”:

—The sequence of operations are built up on elements as a closure

—The closure is not applied until forced by a reduce operation
(actions)

Many other operations are available on RDDs:
— map, reduce, sample, groupByKey, reduceByKey, join, ..

Because RDDs are immutable, all the operations from purely
functional programming can be applied and parallelized in a
straightforward way

COMP 322, Spring 2014 (V.Sarkar)

25

Iterative Map/Reduce Example: Logistic
Redression

Given a collection of examples with various attributes and a
label, we wish to predict the labels for new examples:

<height, weight, age, systolic bp, diastolic bp>: medicine?

<170 cm, 72 kg, 52, 120, 80>: YES
<150 cm, 60 kg, 34 years, 130, 70> : NO

COMP 322, Spring 2014 (V.Sarkar)

Iterative Map/Reduce Example: Logistic
Redression

 We can view the examples as vectors in a high-dimensional
vector space

« The problem of labeling yes/no can be solved by finding the
best hyperplane that divides the given examples according to
their labels

» This new hyperplane can be used to predict labels for new
examples

26 COMP 322, Spring 2014 (V.Sarkar)

Iterative Map/Reduce Example: Logistic
Redression

 We can view the examples as vectors in a high-dimensional
vector space

« The problem of labeling yes/no can be solved by finding the
best hyperplane that divides the given examples according to
their labels

» This new hyperplane can be used to predict labels for new
examples

27 COMP 322, Spring 2014 (V.Sarkar) &)

Iterative Map/Reduce Example: Logistic
Redression

val points = spark.textFile(..).map(parsePoint).cache()
var w = Vector.random(D) // current separating plane

for (i <- 1 to ITERATIONS) {
val gradient = points.map(p =>
(1 /7 (1 + exp(-p.y*(w dot p.x))) — 1) * p.y * p.X
).reduce(_ +)

w —= gradient

}

println("Final separating plane: " + w)

Example presented in:

Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing."
Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX
Association, 2012.

28 COMP 322, Spring 2014 (V.Sarkar) A

Worksheet #32: impact of distribution on paralliel
completion time (rather than locality)

val points = spark.textFile(..).map(parsePoint).cache()
var w = Vector.random(D) // current separating plane

for (i <— 1 to ITERATIONS) {
val gradient = points.map(doWork(1)).reduce(_ + _)

w —= gradient

}

println("Final separating plane: " + w)

Consider the above simplified regression program.
Let each doWork operation cost 1 unit of work.
What is the total work? What is the CPL?

29 COMP 322, Spring 2015 (V.Sarkar, E.Allen) A

