
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 32: Apache Spark framework for

cluster computing

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu
!

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 21 14 March 2014

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #31 solution: impact of distribution
on parallel completion time (rather than locality)

1. public void sampleKernel(!
2. int iterations, int numChunks, Distribution dist) {!
3. for (int iter = 0; iter < iterations; iter++) {!
4. finish(() -> { !
5. forseq (0, numChunks - 1, (jj) -> { !
6. asyncAt(dist.get(jj), () -> {!
7. doWork(jj);!
8. // Assume that time to process chunk jj = jj units !
9. }); !
10. });!
11. });!
12. } // for iter!
13. } // sample kernel

•Assume an execution with n places, each place with one worker thread
•Will a block or cyclic distribution for dist have a smaller abstract
completion time, assuming that all tasks on the same place are serialized
with one worker per place?
!
Answer: Cyclic distribution because it leads to better load balance (locality
was not a consideration in this problem)

2

COMP 322, Spring 2013 (V.Sarkar)

Spark and Iterative Map/Reduce
• After experience with Map/Reduce, users started realizing that

a much larger class of algorithms could be expressed as an
iterative sequence of map/reduce operations
—Many machine learning algorithms fall into this category

• Tools started to emerge to enable easy expression of multiple
map/reduce operations, along with smart scheduling

• But it is also useful to interactively query large datasets

• Apache Spark: General purpose functional programming over a
cluster
—Caches results of map/reduce operations in memory so they can be

used on subsequent iterations
—Tends to be 10-100 times faster than Hadoop for many applications

3

COMP 322, Spring 2014 (V.Sarkar)

!
Apache Spark

• Distributed computing framework based on the Scala
programming language (on the JVM)

• Multiple JVMs (one per machine in a cluster) are coordinated
by a master JVM

4

 Master

JVM 5JVM 4JVM 3JVM 2JVM 1

COMP 322, Spring 2014 (V.Sarkar)

The Scala Programming Language
• Scala is a programming language that combines object-oriented

and functional language features

• Scala comes from “SCAlable LAnguage”: Intended to have the
feel of a scripting language (read-eval-print loop, type
inference) but support for programming in the large (efficient
JVM-based implementation, powerful static type system, etc.)

• Many object-oriented design patterns are natively supported
(singletons via object definitions, visitors via pattern matching)

• Deep interoperability with Java: Classes can be freely mixed
between languages

• Full-fledged functional language: Anonymous functions, higher
order functions, efficient immutable data structures, currying

5

COMP 322, Spring 2014 (V.Sarkar)

The Scala Programming Language
• Small example Scala program:
!
!
object Main {!
 def main(args: Array[String]) {!
 val result = for (i <- 1:10) yield i*i!
 println("Squares: " + result.toString)!
 }!
}!
!

• For more exposure to Scala and functional programming check
out Comp 311 this Fall

6

COMP 322, Spring 2014 (V.Sarkar)

Spark: Resilient Distributed Datasets
• The key construct in Spark is the Resilient Distributed Dataset

(RDD)

• An RDD is an immutable collection, distributed in a reliable way
over the machines in a cluster

• The types of the elements in the RDD can be arbitrary
elements

• If the elements are pairs, then the RDD acts like a key-value
map or table

• Computations on an RDD (including Map/Reduce) can be
expressed as functional programming operations

7

COMP 322, Spring 2014 (V.Sarkar)

!
Apache Spark

• Resilience is achieved without significant data replication:
• The transformations used to compute an RDD are

necessarily shared across an nodes, enabling efficient
recompilation of elements

• Transformations are not applied until forced (an advantage
of immutability)

8

 Master

{a,b,c,d,e,f,g,h}
[transformations]

{i,j,k,l,m,n,o,p,q}
[transformations]

{r,s,t,u,v,w,x,y,z}
[transformations]

COMP 322, Spring 2014 (V.Sarkar)

Advantages of Immutability
• The distributed nature of RDDs is not evident in the

programming model

• RDD elements can be replicated for fault tolerance

• Purely functional operations can be easily defined on RDDs

• The runtime has great flexibility in scheduling operations on
RDDs

9

COMP 322, Spring 2014 (V.Sarkar)

!
Wordcount in Apache Spark

val file = spark.textFile(“hdfs://...")
!
val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey((x,y) => x + y)
!
counts.saveAsTextFile("hdfs://...")

10

COMP 322, Spring 2014 (V.Sarkar)

!
Wordcount in Apache Spark

val file = spark.textFile(“hdfs://...")
!
val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
!
counts.saveAsTextFile("hdfs://...")

11

COMP 322, Spring 2014 (V.Sarkar)

!
Wordcount in Apache Spark

val file = spark.textFile(“hdfs://...")
!
val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
!
counts.saveAsTextFile("hdfs://...")
!
!
x.flatMap(f) = x.map(f).flatten()
!
!
!

12

COMP 322, Spring 2014 (V.Sarkar)

(“this is a line”,
 “this is another line”,
 “this is yet another line”)
.map(line => line.split())
.flatten()
!

13

!
Wordcount in Apache Spark

COMP 322, Spring 2014 (V.Sarkar)

((“this”, “is”, “a”, “line”),
 (“this”, “is”, “another”, “line”),
 (“this”, “is”, “yet”, “another”, “line”))
.flatten()
!

14

!
Wordcount in Apache Spark

COMP 322, Spring 2014 (V.Sarkar)

(“this”, “is”, “a”, “line”, “this”, “is”,
 “another”, “line”, “this”, “is”, “yet”,
 “another”, “line”)

15

!
Wordcount in Apache Spark

COMP 322, Spring 2014 (V.Sarkar)

!
Wordcount in Apache Spark

val file = spark.textFile(“hdfs://...")
!
val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
!
counts.saveAsTextFile("hdfs://...")

16

COMP 322, Spring 2014 (V.Sarkar)

(“this”, “is”, “a”, “line”, “this”, “is”,
 “another”, “line”, “this”, “is”, “yet”,
 “another”, “line”)
.map(word => (word, 1))

17

!
Wordcount in Apache Spark

COMP 322, Spring 2014 (V.Sarkar)

((“this”,1), (“is”,1), (“a”,1), (“line”,1),
 (“this”,1), (“is”,1), (“another”,1),
 (“line”,1), (“this”,1), (“is”,1),
 (“yet”,1),(“another”,1), (“line”,1))

18

!
Wordcount in Apache Spark

COMP 322, Spring 2014 (V.Sarkar)

!
Wordcount in Apache Spark

val file = spark.textFile(“hdfs://...")
!
val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
!
counts.saveAsTextFile("hdfs://...")
!
!
x.reduceByKey(f) = x.groupByKey()
 .map(xs =>
 xs.reduce(f))

19

COMP 322, Spring 2014 (V.Sarkar)

((“this”,1), (“is”,1), (“a”,1), (“line”,1),
 (“this”,1), (“is”,1), (“another”,1),
 (“line”,1), (“this”,1), (“is”,1),
 (“yet”,1),(“another”,1), (“line”,1))
.groupByKey().map(xs =>
 xs.reduce
 (a,b => a+b)
!

20

!
Wordcount in Apache Spark

COMP 322, Spring 2014 (V.Sarkar)

((“this”, (1,1,1),
 (“is”, (1,1,1),
 (“a”, (1)),
 (“line”, (1,1,1)),
 (“another”, (1,1)),
 (“yet”, (1))).map(xs => …)

21

!
Wordcount in Apache Spark

COMP 322, Spring 2014 (V.Sarkar)

((“this”, (1,1,1).reduce(a,b => a+b),
 (“is”, (1,1,1).reduce(a,b => a+b),
 (“a”, (1)).reduce(a,b => a+b),
 (“line”, (1,1,1)).reduce(a,b => a+b),
 (“another”, (1,1)).reduce(a,b => a+b),
 (“yet”, (1)).reduce(a,b => a+b))

22

!
Wordcount in Apache Spark

COMP 322, Spring 2014 (V.Sarkar)

((“this”, 3), (“is”, 3), (“a”, 1),
 (“line”, 3), (“another”, 2), (“yet”, 1))

23

!
Wordcount in Apache Spark

COMP 322, Spring 2014 (V.Sarkar)

Lazy Evaluation of RDDs
• Map operations (transformations) on RDDs are applied “lazily”:

—The sequence of operations are built up on elements as a closure
—The closure is not applied until forced by a reduce operation

(actions)

• Many other operations are available on RDDs:
— map, reduce, sample, groupByKey, reduceByKey, join, …

• Because RDDs are immutable, all the operations from purely
functional programming can be applied and parallelized in a
straightforward way

24

COMP 322, Spring 2014 (V.Sarkar)

Iterative Map/Reduce Example: Logistic
Regression

• Given a collection of examples with various attributes and a
label, we wish to predict the labels for new examples:

!
• <height, weight, age, systolic bp, diastolic bp>: medicine?

!
• <170 cm, 72 kg, 52, 120, 80>: YES

• <150 cm, 60 kg, 34 years, 130, 70> : NO

• …

!
!

25

COMP 322, Spring 2014 (V.Sarkar)

Iterative Map/Reduce Example: Logistic
Regression

• We can view the examples as vectors in a high-dimensional
vector space

• The problem of labeling yes/no can be solved by finding the
best hyperplane that divides the given examples according to
their labels

• This new hyperplane can be used to predict labels for new
examples

26

COMP 322, Spring 2014 (V.Sarkar)

Iterative Map/Reduce Example: Logistic
Regression

• We can view the examples as vectors in a high-dimensional
vector space

• The problem of labeling yes/no can be solved by finding the
best hyperplane that divides the given examples according to
their labels

• This new hyperplane can be used to predict labels for new
examples

27

COMP 322, Spring 2014 (V.Sarkar)

Iterative Map/Reduce Example: Logistic
Regression

val points = spark.textFile(…).map(parsePoint).cache()
!
var w = Vector.random(D) // current separating plane
!
for (i <- 1 to ITERATIONS) {
 val gradient = points.map(p =>
 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
!
 w -= gradient
}
!
println("Final separating plane: " + w)
!!
Example presented in: !
Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing."
Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX
Association, 2012.

28

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #32: impact of distribution on parallel
completion time (rather than locality)

29

val points = spark.textFile(…).map(parsePoint).cache()
!
var w = Vector.random(D) // current separating plane
!
for (i <- 1 to ITERATIONS) {
 val gradient = points.map(doWork(1)).reduce(_ + _)
!
 w -= gradient
}
!
println("Final separating plane: " + w)

Consider the above simplified regression program.
Let each doWork operation cost 1 unit of work.
What is the total work? What is the CPL?

