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Worksheet #35 solution: UPC data 
distributions

In the following example from slide 22, assume that each UPC array is 
distributed by default across threads with a cyclic distribution.  In the space 
below, identify an iteration of the upc_forall construct for which all array 
accesses are local, and an iteration for which all array accesses are non-local 
(remote).  Explain your answer in each case. 

shared int a[100],b[100], c[100]; 
int i; 
upc_forall (i=0; i<100; i++; (i*THREADS)/100) 
    a[i] = b[i] * c[i];
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Solution: 
• Iteration 0 has affinity with thread 0, and accesses a[0], b[0], c[0], all 
of which are located locally at thread 0 
• Iteration 1 has affinity with thread 0, and accesses a[1], b[1], c[1], all 
of which are located remotely at thread 1
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Memory Visibility
• Basic question: if a memory location L is written by statement S1 in 

thread T1, when is that write guaranteed to be visible to a read of L 
in statement S2 of thread T2? 

• General answer: whenever there is a directed path of edges from S1 
in S2 in the computation graph 

—Computation graph edges are defined by semantics of parallel 
HJlib constructs — e.g., async, finish, async-await, futures, 
phasers, isolated, object-based isolation — and can be defined 
for parallel Java constructs in a similar manner 

—This directed path of edges is also referred to as a “happens-
before” relation from S1 to S2
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Troublesome example
1. public class NoVisibility {!
2.  private static boolean ready;!
3.  private static int number;!
4. !
5.  private static class ReaderThread extends Thread {!
6.    public void run() {!
7.      while (!ready) Thread.yield()!
8.      System.out.println(number)!
9.    }!
10.  }!
11. !
12.  public static void main(String[] args) {!
13.    new ReaderThread().start();!
14.    number = 42;!
15.    ready = true;!
16.  }!
17. }
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No happens-before ordering between main 
thread and ReaderThread 
==> ReaderThread may loop forever OR may 
print 42 OR may print 0  !!
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Volatile Variables in Java
• Java provides a “light” form of synchronization/fence operations in the form of volatile variables 

(fields) 
• Volatile variables guarantee visibility 
— Reads and writes of volatile variables should be assumed to occur in “location-based isolated blocks”, 

which are finer-grained than object-based isolated blocks  
— Adds serialization edges to computation graph due to isolated read/write operations on same volatile 

variable 
• Incrementing a volatile variable (++v) is not thread-safe 
— Increment operation looks atomic, but isn’t (read and write are two separate operations in “v = v + 1”).  

Better to use AtomicInteger instead. 
• Volatile variables are often used for flag variables that implement synchronization patterns e.g., 

        volatile boolean asleep;!
        foo() { ... while (! asleep) ++sheep; ... }!

— WARNING: In the absence of volatile declaration, the above code can legally be transformed to the 
following (much better to use explicit synchronization construct instead e.g., Eureka or Data-Driven Task) 
boolean asleep;!

foo(){ boolean temp=asleep; ... while (! temp) ++sheep; ... }
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Troublesome example fixed with volatile 
declaration

1. public class NoVisibility {!
2.  private static volatile boolean ready;!
3.  private static volatile int number;!
4. !
5.  private static class ReaderThread extends Thread {!
6.    public void run() {!
7.      while (!ready) Thread.yield()!
8.      System.out.println(number)!
9.    }!
10.  }!
11. !
12.  public static void main(String[] args) {!
13.    new ReaderThread().start();!
14.    number = 42;!
15.    ready = true;!
16.  }!
17. }
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Declaring number and ready as volatile 
ensures happens-before-edges: 14--
>15-->7-->8, thereby ensuring that 
only 42 will be printed
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Data Races on non-volatile variables !
are usually errors, but not always

• Example of Data Race Error 
1. for ( p = first; p != null; p = p.next) !
2.     async p.x = p.y + p.z;!
3. for ( p = first; p != null; p = p.next) !
4.     sum += p.x;!

• Example of intentional (benign) data race 
• Search algorithm that returns any match (need not be the first match) 
5. static int index = -1; // static field!
6. . . .!
7. finish for (int i = 0; i <= N - M; i++) async { !
8.   for (j = 0; j < M; j++) !
9.     if (text[i+j] != pattern[j]) break; !
10.   if (j == M) index = i;            // found at offset i!
11. }!

• In both cases, the semantics of data races still needs to be fully specified
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Memory Consistency Models — Rules for 
specifying Semantics of Data Races

• A memory consistency model, or memory model, is the part of a programming 
specification that defines what write values a read may observe 

— For data-race-free programs, all memory models are identical since each read can 
observe exactly one write value 
⇒if you only write data-race-free programs, you don’t have to worry about memory 

model details 

• Question: why do different memory models have different rules for data races? 

• Answer: because different memory models are useful at different levels of software 
—  Sequential Consistency (SC) — strongest (smallest set of writes for a read) 

– Useful for implementing low-level synchronization primitives e.g.,  operating 
system services 

—  Java Memory Model (JMM) 
– Useful for implementing task schedulers e.g., HJ runtime 

—  Habanero Java Memory Model (HJMM) — weakest (largest set of writes for a read) 
– Useful for specifying semantics at application task level e.g., HJ programs

SC

JMM

HJMM
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Sequential Consistency Memory Model
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Sequential Consistency (SC) Memory 
Model

• SC constrains all memory operations across 
all tasks 

– Write → Read 
– Write → Write  
– Read → Read 
– Read → Write 

- Simple model for reasoning about data races 
at the hardware level, but may lead to counter-
intuitive behavior at the application level e.g., 
- A programmer may perform modular code 

transformations for software engineering 
reasons without realizing that they are 
changing the program’s semantics
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Consider a “reasonable” code 
transformation performed by a programmer

Example HJ program: 

1. p.x = 0; q = p;!

2. async p.x = 1; // Task T1!

3. async p.x = 2; // Task T2!

4. async { // Task T3!

5.   System.out.println("First read = " + p.x);!

6.   System.out.println("Second read = " + p.x);!

7.   System.out.println("Third read = " + p.x)!

8. }!

9. async { // Task T4!

10.  // Assume programmer doesn’t know that p=q!

11.  int p_x = p.x;  !

12.  System.out.println("First read = " + p_x);!

13.  System.out.println("Second read = " + q.x);!

14.  System.out.println("Third read = " + p_x);!

15.}
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5.   System.out.println("First read = " + p.x);!

6.   System.out.println("Second read = " + p.x);!
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This reasonable code 
transformation resulted in 
an illegal output, under the 

SC model!
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Code Transformation Example
Example HJ program: 

1. p.x = 0; q = p;!

2. async p.x = 1; // Task T1!

3. async p.x = 2; // Task T2!

4. async { // Task T3!

5.   System.out.println("First read = " + p.x);!

6.   System.out.println("Second read = " + p.x);!

7.   System.out.println("Third read = " + p.x)!

8. }!

9. async { // Task T4!

10.  // Assume programmer doesn’t know that p=q!

11.  int p_x = p.x;  !

12.  System.out.println("First read = " + p_x);!

13.  System.out.println("Second read = " + q.x);!

14.  System.out.println("Third read = " + p_x);!

15.}
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This output is legal under 
the JMM and HJMM!
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Semantics-Preserving Code 
Transformations in Sequential Programs

• A Code Transformation is said to be semantics-preserving if the transformed program, P’, 
exhibits the same Input-Output behavior as the original program, P 

• For sequential programs, many local transformations are guaranteed to be semantics-
preserving regardless of the context  

— e.g., replacing the second access of an object field or array 
element by a local variable containing the result of the first 
access, if there are no possible updates between the two 
accesses
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1. static void foo(T p, T q) {   !

2.   System.out.println(p.x);!

3.   System.out.println(q.x);!

4.   System.out.println(p.x);!

5. }

1. static void foo(T p, T q) { !

2.   int xLocal = p.x;  !

3.   System.out.println(xLocal);!

4.   System.out.println(q.x);!

5.   System.out.println(xLocal);!

6. }

P
P’
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Semantics-Preserving Code 
Transformations in Parallel Programs

• Question: What should we expect if we perform a Code Transformation on a sequential 
region of a parallel program, if the transformation is known to be semantics-preserving for 
sequential programs? 

• Answer: The transformation should be semantics-preserving for the parallel program if 
there are no data races.  Otherwise, it depends on the memory model!
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1. p.x = 0; q = p;!

2. async p.x = 1; !

3. async p.x = 2; !

4. async foo(p, p);!

5. async foo(p, q);!

6. . . .!

7. static void foo(T p, T q) {   !

8.   System.out.println(p.x);!

9.   System.out.println(q.x);!

10.  System.out.println(p.x);!

11.}

P P’ 1. p.x = 0; q = p;!

2. async p.x = 1; !

3. async p.x = 2; !

4. async foo(p, p);!

5. async foo(p, q);!

6. . . .!

7. static void foo(T p, T q) { !

8.   int xLocal = p.x  !

9.   System.out.println(xLocal);!

10.  System.out.println(q.x);!

11.  System.out.println(xLocal);!

12.}

Is this a legal 
transformation?

It may result in the 
following output: 

0 0 0 
1 2 1 

==> Code transformation is legal for JMM & HJMM, 
but not for SC !
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When are actions visible and ordered 
with other Threads in the JMM?
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x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

Everything 
before 

the unlock is 
visible to 
everything 
after the 

matching lock in 
the JMM

lock/unlock operations can come from synchronized 
statement or from explicit calls to locking libraries
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Troublesome example fixed with empty 
synchronized statements instead of 

1. public class NoVisibility {!
2.  private static boolean ready;!
3.  private static int number;!
4.  private static final Object a = new Object();!
5. !
6.  private static class ReaderThread extends Thread {!
7.    public void run() {!
8.      synchronized(a){}!
9.      while (!ready) { Thread.yield(); synchronized(a){} }!
10.     System.out.println(number);!
11.    }!
12.  }!
13. !
14.  public static void main(String[] args) {!
15.    new ReaderThread().start();!
16.    number = 42;!
17.    ready = true; synchronized(a){}!
18.  }!
19. }
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Empty synchronized statement 
is NOT a no-op in Java.  It 
acts as a memory “fence”.
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Empty isolated statements are no-ops in 
HJ

1. public class NoVisibility {!
2.  private static boolean ready;!
3.  private static int number;!
4. !
5.  private static class ReaderThread extends Thread {!
6.    public void run() {!
7.      isolated{}!
8.      while (!ready) { Thread.yield(); isolated{} }!
9.      System.out.println(number);!
10.    }!
11.  }!
12. !
13.  public static void main(String[] args) {!
14.    new ReaderThread().start();!
15.    number = 42;!
16.    ready = true; isolated {}!
17.  }!
18. }
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Empty isolated statement is a no-op in HJ.  ReaderThread 
may loop forever OR may print 42 OR may print 0.
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Better to use explicit synchronization 
in HJ instead

1. public class NoVisibility {!
2.  private static boolean ready;!
3.  private static int number;!
4.  private static DataDrivenFuture<Boolean>!
5.      readyDDF = new DataDrivenFuture<Boolean>();!
6. !
7.  public static void main(String[] args) {!
8.    async await(readyDDF) {System.out.println(number);}!
9.    number = 42;!
10.   readyDDF.put(true);!
11.  }!
12. }

19

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Summary of Memory Model Discussion
• Memory model specifies rules for what write values can be seen by 

reads in the presence of data races 
— In the absence of data races, program semantics specifies 

exactly one write for each read 

• A local code transformation performed on a sequential code region 
may be semantics-preserving for sequential programs, but not 
necessarily for parallel programs 
— Stronger memory models (e.g., SC) are more restrictive about 

permissible read sets than weaker memory models (e.g., JMM, 
HJMM), and thus more restrictive about allowing 
transformations 

• Different memory models are appropriate for different levels of the 
software stack 
— e.g., SC at the OS/HW level, JMM at the thread level, HJMM at the 

task level
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SC

JMM

HJMM


