
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 36: Volatile Variables,
Memory Consistency Models

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 36 17 April 2015

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #35 solution: UPC data
distributions

In the following example from slide 22, assume that each UPC array is
distributed by default across threads with a cyclic distribution. In the space
below, identify an iteration of the upc_forall construct for which all array
accesses are local, and an iteration for which all array accesses are non-local
(remote). Explain your answer in each case.

shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; (i*THREADS)/100)
 a[i] = b[i] * c[i];

2

Solution:
• Iteration 0 has affinity with thread 0, and accesses a[0], b[0], c[0], all
of which are located locally at thread 0
• Iteration 1 has affinity with thread 0, and accesses a[1], b[1], c[1], all
of which are located remotely at thread 1

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Memory Visibility
• Basic question: if a memory location L is written by statement S1 in

thread T1, when is that write guaranteed to be visible to a read of L
in statement S2 of thread T2?

• General answer: whenever there is a directed path of edges from S1
in S2 in the computation graph

—Computation graph edges are defined by semantics of parallel
HJlib constructs — e.g., async, finish, async-await, futures,
phasers, isolated, object-based isolation — and can be defined
for parallel Java constructs in a similar manner

—This directed path of edges is also referred to as a “happens-
before” relation from S1 to S2

3

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Troublesome example
1. public class NoVisibility {!
2. private static boolean ready;!
3. private static int number;!
4. !
5. private static class ReaderThread extends Thread {!
6. public void run() {!
7. while (!ready) Thread.yield()!
8. System.out.println(number)!
9. }!
10. }!
11. !
12. public static void main(String[] args) {!
13. new ReaderThread().start();!
14. number = 42;!
15. ready = true;!
16. }!
17. }

4

No happens-before ordering between main
thread and ReaderThread
==> ReaderThread may loop forever OR may
print 42 OR may print 0 !!

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Volatile Variables in Java
• Java provides a “light” form of synchronization/fence operations in the form of volatile variables

(fields)
• Volatile variables guarantee visibility
— Reads and writes of volatile variables should be assumed to occur in “location-based isolated blocks”,

which are finer-grained than object-based isolated blocks
— Adds serialization edges to computation graph due to isolated read/write operations on same volatile

variable
• Incrementing a volatile variable (++v) is not thread-safe
— Increment operation looks atomic, but isn’t (read and write are two separate operations in “v = v + 1”).

Better to use AtomicInteger instead.
• Volatile variables are often used for flag variables that implement synchronization patterns e.g.,

 volatile boolean asleep;!
 foo() { ... while (! asleep) ++sheep; ... }!

— WARNING: In the absence of volatile declaration, the above code can legally be transformed to the
following (much better to use explicit synchronization construct instead e.g., Eureka or Data-Driven Task)
boolean asleep;!

foo(){ boolean temp=asleep; ... while (! temp) ++sheep; ... }

5

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Troublesome example fixed with volatile
declaration

1. public class NoVisibility {!
2. private static volatile boolean ready;!
3. private static volatile int number;!
4. !
5. private static class ReaderThread extends Thread {!
6. public void run() {!
7. while (!ready) Thread.yield()!
8. System.out.println(number)!
9. }!
10. }!
11. !
12. public static void main(String[] args) {!
13. new ReaderThread().start();!
14. number = 42;!
15. ready = true;!
16. }!
17. }

6

Declaring number and ready as volatile
ensures happens-before-edges: 14--
>15-->7-->8, thereby ensuring that
only 42 will be printed

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Data Races on non-volatile variables !
are usually errors, but not always

• Example of Data Race Error
1. for (p = first; p != null; p = p.next) !
2. async p.x = p.y + p.z;!
3. for (p = first; p != null; p = p.next) !
4. sum += p.x;!

• Example of intentional (benign) data race
• Search algorithm that returns any match (need not be the first match)
5. static int index = -1; // static field!
6. . . .!
7. finish for (int i = 0; i <= N - M; i++) async { !
8. for (j = 0; j < M; j++) !
9. if (text[i+j] != pattern[j]) break; !
10. if (j == M) index = i; // found at offset i!
11. }!

• In both cases, the semantics of data races still needs to be fully specified

7

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Memory Consistency Models — Rules for
specifying Semantics of Data Races

• A memory consistency model, or memory model, is the part of a programming
specification that defines what write values a read may observe

— For data-race-free programs, all memory models are identical since each read can
observe exactly one write value
⇒if you only write data-race-free programs, you don’t have to worry about memory

model details

• Question: why do different memory models have different rules for data races?

• Answer: because different memory models are useful at different levels of software
— Sequential Consistency (SC) — strongest (smallest set of writes for a read)

– Useful for implementing low-level synchronization primitives e.g., operating
system services

— Java Memory Model (JMM)
– Useful for implementing task schedulers e.g., HJ runtime

— Habanero Java Memory Model (HJMM) — weakest (largest set of writes for a read)
– Useful for specifying semantics at application task level e.g., HJ programs

SC

JMM

HJMM

8

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Sequential Consistency Memory Model

9

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Sequential Consistency (SC) Memory
Model

• SC constrains all memory operations across
all tasks

– Write → Read
– Write → Write
– Read → Read
– Read → Write

- Simple model for reasoning about data races
at the hardware level, but may lead to counter-
intuitive behavior at the application level e.g.,
- A programmer may perform modular code

transformations for software engineering
reasons without realizing that they are
changing the program’s semantics

10

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p.x; (5)

...=q.x; (7)

...=p.x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
2

O
u
t
p
u
t

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Consider a “reasonable” code
transformation performed by a programmer

Example HJ program:

1. p.x = 0; q = p;!

2. async p.x = 1; // Task T1!

3. async p.x = 2; // Task T2!

4. async { // Task T3!

5. System.out.println("First read = " + p.x);!

6. System.out.println("Second read = " + p.x);!

7. System.out.println("Third read = " + p.x)!

8. }!

9. async { // Task T4!

10. // Assume programmer doesn’t know that p=q!

11. int p_x = p.x; !

12. System.out.println("First read = " + p_x);!

13. System.out.println("Second read = " + q.x);!

14. System.out.println("Third read = " + p_x);!

15.}

11

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Consider a “reasonable” code
transformation performed by a programmer

Example HJ program:

1. p.x = 0; q = p;!

2. async p.x = 1; // Task T1!

3. async p.x = 2; // Task T2!

4. async { // Task T3!

5. System.out.println("First read = " + p.x);!

6. System.out.println("Second read = " + p.x);!

7. System.out.println("Third read = " + p.x)!

8. }!

9. async { // Task T4!

10. // Assume programmer doesn’t know that p=q!

11. int p_x = p.x; !

12. System.out.println("First read = " + p_x);!

13. System.out.println("Second read = " + q.x);!

14. System.out.println("Third read = " + p_x);!

15.}

12

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

This reasonable code
transformation resulted in
an illegal output, under the

SC model!

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Code Transformation Example
Example HJ program:

1. p.x = 0; q = p;!

2. async p.x = 1; // Task T1!

3. async p.x = 2; // Task T2!

4. async { // Task T3!

5. System.out.println("First read = " + p.x);!

6. System.out.println("Second read = " + p.x);!

7. System.out.println("Third read = " + p.x)!

8. }!

9. async { // Task T4!

10. // Assume programmer doesn’t know that p=q!

11. int p_x = p.x; !

12. System.out.println("First read = " + p_x);!

13. System.out.println("Second read = " + q.x);!

14. System.out.println("Third read = " + p_x);!

15.}

13

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

This output is legal under
the JMM and HJMM!

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Semantics-Preserving Code
Transformations in Sequential Programs

• A Code Transformation is said to be semantics-preserving if the transformed program, P’,
exhibits the same Input-Output behavior as the original program, P

• For sequential programs, many local transformations are guaranteed to be semantics-
preserving regardless of the context

— e.g., replacing the second access of an object field or array
element by a local variable containing the result of the first
access, if there are no possible updates between the two
accesses

14

1. static void foo(T p, T q) { !

2. System.out.println(p.x);!

3. System.out.println(q.x);!

4. System.out.println(p.x);!

5. }

1. static void foo(T p, T q) { !

2. int xLocal = p.x; !

3. System.out.println(xLocal);!

4. System.out.println(q.x);!

5. System.out.println(xLocal);!

6. }

P
P’

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Semantics-Preserving Code
Transformations in Parallel Programs

• Question: What should we expect if we perform a Code Transformation on a sequential
region of a parallel program, if the transformation is known to be semantics-preserving for
sequential programs?

• Answer: The transformation should be semantics-preserving for the parallel program if
there are no data races. Otherwise, it depends on the memory model!

15

1. p.x = 0; q = p;!

2. async p.x = 1; !

3. async p.x = 2; !

4. async foo(p, p);!

5. async foo(p, q);!

6. . . .!

7. static void foo(T p, T q) { !

8. System.out.println(p.x);!

9. System.out.println(q.x);!

10. System.out.println(p.x);!

11.}

P P’ 1. p.x = 0; q = p;!

2. async p.x = 1; !

3. async p.x = 2; !

4. async foo(p, p);!

5. async foo(p, q);!

6. . . .!

7. static void foo(T p, T q) { !

8. int xLocal = p.x !

9. System.out.println(xLocal);!

10. System.out.println(q.x);!

11. System.out.println(xLocal);!

12.}

Is this a legal
transformation?

It may result in the
following output:

0 0 0
1 2 1

==> Code transformation is legal for JMM & HJMM,
but not for SC !

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

When are actions visible and ordered
with other Threads in the JMM?

16

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

Everything
before 

the unlock is
visible to
everything
after the

matching lock in
the JMM

lock/unlock operations can come from synchronized
statement or from explicit calls to locking libraries

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Troublesome example fixed with empty
synchronized statements instead of

1. public class NoVisibility {!
2. private static boolean ready;!
3. private static int number;!
4. private static final Object a = new Object();!
5. !
6. private static class ReaderThread extends Thread {!
7. public void run() {!
8. synchronized(a){}!
9. while (!ready) { Thread.yield(); synchronized(a){} }!
10. System.out.println(number);!
11. }!
12. }!
13. !
14. public static void main(String[] args) {!
15. new ReaderThread().start();!
16. number = 42;!
17. ready = true; synchronized(a){}!
18. }!
19. }

17

Empty synchronized statement
is NOT a no-op in Java. It
acts as a memory “fence”.

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Empty isolated statements are no-ops in
HJ

1. public class NoVisibility {!
2. private static boolean ready;!
3. private static int number;!
4. !
5. private static class ReaderThread extends Thread {!
6. public void run() {!
7. isolated{}!
8. while (!ready) { Thread.yield(); isolated{} }!
9. System.out.println(number);!
10. }!
11. }!
12. !
13. public static void main(String[] args) {!
14. new ReaderThread().start();!
15. number = 42;!
16. ready = true; isolated {}!
17. }!
18. }

18

Empty isolated statement is a no-op in HJ. ReaderThread
may loop forever OR may print 42 OR may print 0.

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Better to use explicit synchronization
in HJ instead

1. public class NoVisibility {!
2. private static boolean ready;!
3. private static int number;!
4. private static DataDrivenFuture<Boolean>!
5. readyDDF = new DataDrivenFuture<Boolean>();!
6. !
7. public static void main(String[] args) {!
8. async await(readyDDF) {System.out.println(number);}!
9. number = 42;!
10. readyDDF.put(true);!
11. }!
12. }

19

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Summary of Memory Model Discussion
• Memory model specifies rules for what write values can be seen by

reads in the presence of data races
— In the absence of data races, program semantics specifies

exactly one write for each read

• A local code transformation performed on a sequential code region
may be semantics-preserving for sequential programs, but not
necessarily for parallel programs
— Stronger memory models (e.g., SC) are more restrictive about

permissible read sets than weaker memory models (e.g., JMM,
HJMM), and thus more restrictive about allowing
transformations

• Different memory models are appropriate for different levels of the
software stack
— e.g., SC at the OS/HW level, JMM at the thread level, HJMM at the

task level

20

SC

JMM

HJMM

