
A Brief History of Project Fortress

Eric Allen

Two Sigma Investments, LLC

eric.allen@twosigma.com

April 22, 2015

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 1 / 18



The DARPA HPCS Project

In 2003, The United States determined to retake the lead in high
performance computing

HPCS: High Performance/Productivity Computer Systems

Participants charged with rethinking computing from the ground up
at the ‘peta scale”:

quadrillions of operations per second
quadrillions of bytes in memory

Rethinking chip design, communication, operating systems, languages
and programming models at this scale

Three participants: IBM, Cray, Sun

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 2 / 18



Language Design at the Petascale

Pervasive parallelism must be at the heart of computation at this scale

Programmer productivity critical

Software development at the national labs has been dominated by the
time to design and implement a solution

Participants were charged with aiming for a 10x improvement in
productivity

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 3 / 18



Project Fortress: Sun’s Approach to a Scientific

Programming Language

Fortress Design Philosophy:
Start with a fresh design and first see what productivity improvements
we might achieve in that context

Integration with legacy languages could be dealt with later

Make the code look as much as possible like the specification
(seriously)

Mathematical notation as concrete syntax

Make things parallel by default
‘Growing a Language” (Steele, OOPSLA 1998)

Many, many participants (Sun employees, interns, academic
researchers, and community members) contributed signficantly to
Fortress, over nearly a decade

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 4 / 18



Mathematical Notation as Concrete Syntax

Example Map/Reduce in Fortress:

π = 4 (
∑

1←1:trials

if random()2 + random()2 ≤ 1 then 1 else 0)/trials

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 5 / 18



Mathematical Notation as Concrete Syntax

Example Map/Reduce in Fortress:

π = 4 (
∑

1←1:trials

if random()2 + random()2 ≤ 1 then 1 else 0)/trials

Equivalent to the following code in Apache Spark:

val count = sc.parallelize(1 to NUM_TRIALS).map{i =>

val x = java.util.concurrent.ThreadLocalRandom.nextDouble(1)

val y = java.util.concurrent.ThreadLocalRandom.nextDouble(1)

if (x*x + y*y <= 1) 1 else 0

}.reduce(_ + _)

val result = (4 * count) / NUM_TRIALS

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 6 / 18



Mathematical Notation as Concrete Syntax

Example Map/Reduce in Fortress:

π = 4 (
∑

1←1:trials

if random()2 + random()2 ≤ 1 then 1 else 0)/trials

How is this entered at a keyboard?

pi = 4 (SUM[1 <- 1 : trials]

if random()^2 + random()^2 <= 1 then 1 else 0)

/ trials

In fact, that is what was typed on this slide to produce the rendered
version of the code (using standard Fortress tools for preprocessing LATEX)

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 7 / 18



Static Checking of Physical Units and Dimensions

dimensionVelocity = Distance/Time

dimensionAcceleration = Velocity/Time

dimensionForce = MassAcceleration

g = 9.81
m

s2

v(t:R64Time, v0:R64Velocity):R64Velocity = −(g t) + v0

y(t:R64Time, v0:R64Velocity, y0:R64Distance):R64Distance =

−
1

2
g t2 + v0 t + y0

y

(

3.14 s, 2.718
km

s
, .57721 km

)

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 8 / 18



Operator Overloading

Operators can be overloaded in libraries, including prefix, postfix, infix, and
‘enclosing operators” (various kinds of brackets)

opr (n:Z64)! =
∏

i←1:n

i

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 9 / 18



User-Extensible Concrete Syntax

grammar ForLoop extends {Expression, Identifier }

Expr |:=

for {i : Id← e:Expr, ?Space}∗ do block :Expr end⇒

〈 for2 i ∗ ∗; e ∗ ∗; do block ; end 〉

| for2 i : Id∗; e:Expr∗; do block :Expr; end⇒

case i of

Empty⇒

〈block〉

Cons(ia, ib)⇒

case e of

Empty⇒ 〈throw Unreachable〉

Cons(ea, eb)⇒

〈((ea).loop(fn ia⇒ (for2 ib ∗ ∗; ed ∗ ∗;

do block ; end)))〉

end

endEric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 10 / 18



Symmetric Multiple Dynamic Dispatch

isContinuous
(

f :FunctionJR64,R64K
)

isContinuous
(

f :FunctionJR64,R64K, g :FunctionJR64,R64K
)

isContinuous
(

f :FunctionJ(R64,R64),R64K
)

isContinuous
(

f :FunctionJGraph,GraphK
)

isContinuous
(

f :FunctionJGraph,GraphK, g :FunctionJGraph,GraphK
)

isContinuous
(

f :FunctionJR64,R64K, g :FunctionJGraph,GraphK
)

isContinuousJS :MetricSpaceK
(

f :FunctionJS , SK
)

isContinuousJT :TopologicalSpaceK
(

f :FunctionJT ,T K
)

isContinuousJS :TopologicalSpace,T :TopologicalSpaceK
(

f :FunctionJS ,T K
)

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 11 / 18



Parallel by Default

Make it difficult for programmers to avoid parallelism.

A tuple expression (including the arguments to a function) is
equivalent to an HJ finish with asyncs:

(e1, e2, e3, e4) is equivalent to:

finish {

async e1;

async e2;

async e3;

async e4;

}

By making parallelism pervasive, programmers are subtly encouraged to
avoid side effects in code whenever possible, to prevent race conditions.

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 12 / 18



Parallel by Default

For loops are parallel by default

Maps and reductions are parallel by default

Variables written to but not read within for loops are implicit
accumulators

{x2 | x ← 1 : trials}

∑

i←1:trials

i2 + 1

for i ← 1 : trials do

result += i2 + 1

end

All of the above are desugared into calls to generators and reductions:
objects defined in libraries that act somewhat like map and reduce
operations.

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 13 / 18



Atomic Blocks

An atomic block in Fortress is equivalent to an unqualified isolated block
in HJ:

atomic do

f (x)

end

Atomic blocks can be aborted explicitly with the abort() command

There is also tryatomic

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 14 / 18



Spawn and Regions

spawn is a lot like HJ’s async

spawn do

f (x)

end

Tasks can be spawned at particular regions:

spawn at a.region(d) do

f (x)

end

This should look quite familiar!

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 15 / 18



Evolution of HPC During Fortress

When HPCS started, the focus was on scientific computing at
national labs

The advent of multicore architectures made parallelism pervasive

The advent of big data dramatically increased the user base for
cluster computing

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 16 / 18



Where is Fortress Now?

A research compiler was implemented for multicore computing using
an early version of the Java workstealing library

The specification and all code is available under a BSD license

Sun/Oracle wrapped up work on Fortress in 2012

Many open research problems were solved as part of the project

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 17 / 18



Fortress and Future Language Design

‘And finally, when the project is at its end, carefully reassess it, recognize

that many aspects could be improved, and do it all over again.”

Nicholas Wirth, On The Design of Programming Languages. 1974.

Eric Allen (Two Sigma Investments, LLC) Short title April 22, 2015 18 / 18


