COMP 322 Spring 2016

Lab 5: Loop Chunking and Barrier Synchronization
Instructor: Vivek Sarkar, Co-Instructor: Shams Imam
Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

e NOTS Setup
e An introduction to the shell
e Experimentation with Loop Chunking

e Experimentation with Barriers

Importants tips and links

edX site : https://edge.edx.org/courses/RiceX/COMP322/1T2014R
Piazza site : https://piazza.com/rice/spring2015/comp322/home
Java 8 Download : https://jdk8. java.net/download.html
Maven Download : http://maven.apache.org/download.cgi
IntelliJ IDEA : http://www.jetbrains.com/idea/download/

HJlib Jar File : https://github.com/habanero-maven/hjlib-maven-repo/raw/mvn-repo/edu/rice/
hjlib-cooperative/0.1.8/hjlib-cooperative-0.1.8.jar

HJlib API Documentation : http://pasiphae.cs.rice.edu/

HelloWorld Project : https://wiki.rice.edu/confluence/pages/viewpage.action?pageld=14433124

Lab Projects

Today we will be using the One-Dimensional Iterative Averaging example you were introduced to in Lecture
11 to learn about using remote compute clusters at Rice through the terminal, about loop chunking, and
about barriers.

The Maven project for this lab is located in the following svn repository:
e https://svn.rice.edu/r/comp322/turnin/S16/NETID /lab._5/

or can be downloaded from the COMP 322 website. Please pull this project down, import it into IntelliJ,
and verify you can build it. Feel free to use whatever methods you are most comfortable with to achieve
this (e.g. command-line SVN vs. IntelliJ SVN, automatic Maven-based JAR configuration vs. manual JAR
imports, etc). If you need them, instructions are available in the HW2 handout. As always, be sure that the
HJlib -javaagent command line option is added to any run configurations you use in IntelliJ.

1of 7

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
https://edge.edx.org/courses/RiceX/COMP322/1T2014R
https://piazza.com/rice/spring2015/comp322/home
https://jdk8.java.net/download.html
http://maven.apache.org/download.cgi
http://www.jetbrains.com/idea/download/
https://github.com/habanero-maven/hjlib-maven-repo/raw/mvn-repo/edu/rice/hjlib-cooperative/0.1.8/hjlib-cooperative-0.1.8.jar
https://github.com/habanero-maven/hjlib-maven-repo/raw/mvn-repo/edu/rice/hjlib-cooperative/0.1.8/hjlib-cooperative-0.1.8.jar
http://pasiphae.cs.rice.edu/
https://wiki.rice.edu/confluence/pages/viewpage.action?pageId=14433124

COMP 322 Lab 5: Loop Chunking and Barrier Synchronization
Spring 2016

1 NOTS setup

NOTS (Night Owls Time-Sharing Service) is a Rice compute cluster designed to run large multi-node jobs
over a fast interconnect. The main difference between using NOT'S and using your laptop is that NOTS allows
you to gain access to dedicated compute nodes to obtain reliable performance timings for your programming
assignments. On your laptop, you have less control over when other processes or your power manager might
start stealing cores or memory from your running parallel program.

Prior to lab, you should have completed the setup instructions from https://piazza.com/class/iirz0Ou74egl2q9?
cid=151. If you have not, please do so now. These instructions ensure that we have 1) an SSH client that
allows us to remotely access a terminal on NOTS, and 2) some method of uploading and downloading files

to NOTS (either through SCP or SFTP). These instructions will focus on the use of SCP, but if you are
familiar with SFTP (e.g. FileZilla) it should be straightforward to use that instead. You also have the option

of using your SVN turnin folder to handle transferring files to and from the cluster, but the teaching staff
recommends becoming familiar with tools like SCP and SFTP as they are very useful and widely used.

e Start by logging in to NOTS. From the command line on Mac/Linux:

$ ssh (your-netid)@nots.rice.edu
(your-netid)@ssh.clear.rice.edu’s password: (your-password)

On Windows, simply open Putty and enter nots.rice.edu as the hostname you want to access, then
click “Open” and follow the prompts. Your password should be the same as the one you use to log in
to other Rice services like CLEAR or Owlspace. Note that this login connects you to a shared login
node, not a dedicated compute node.

e After you have logged in to NOTS, run the following command to setup the JDK8 and Maven path.
source /home/jmg3/comp322/322_setup.sh

Note: You will have to run this command each time you log on NOTS. You should add this command
to the bottom of the file ~/.bash_profile so that it will run automatically each time you log in.

e Check your installation by running the following commands:
which java

You should see the following: /opt/apps/software/Core/Java/1.8.0.45/bin/java

Check java installation:
java -version
You should see the following:

java version "1.8.0.45" Java(TM) SE Runtime Environment (build 1.8.0.45-b14) Java
HotSpot (TM) 64-Bit Server VM (build 25.45-b02, mixed mode)

Check maven installation:
mvn --version
You should see the following:

Apache Maven 3.3.9 (bb52d8502b132ec0aba3f4c09453c07478323dc5; 2015-11-10T10:41:47-06:00)

Maven home: /home/jmg3/install/apache-maven-3.3.9 Java version: 1.8.0.45, vendor:

Oracle Corporation Java home: /opt/apps/software/Core/Java/1.8.0.45/jre Default

locale: enUS, platform encoding: UTF-8 0S name: "linux", version: "3.10.0-229.e17.x86_64",
arch: "amd64", family: "unix"

20f 7

https://piazza.com/class/iirz0u74egl2q9?cid=151
https://piazza.com/class/iirz0u74egl2q9?cid=151

COMP 322 Lab 5: Loop Chunking and Barrier Synchronization
Spring 2016

e When you log on to NOTS, you will be connected to a login node along with many other users (type
users at the terminal if you would like to see all the other people with active sessions on the same
machine). Running your performance experiments on the login node would face the same problems as
on your laptops: in a multi-tenant system, it is hard to prevent interference with your performance
results. Once you have an executable program, and are ready to run it on the compute nodes, you
must create a job script that configures and runs your program on a dedicated compute node. The
following items will walk you through editing a job script we have provided, uploading your Lab 5
project to NOTS, and then launching a compute job on NOTS using the job script.

e The job script will provide information on your job such as the number of nodes you want to use
(usually just one in this course), the amount of time you want your job to be allowed to run for, the
amount of memory your job will need, as well as the actual commands you want to be executed as
part of your job. We have provided a script template in the Lab 5 template code at:

lab_5/src/main/resources/myjob.slurm

You only need to change the line marked “TODQ”. The change on line 8 of that file indicates an e-mail
address to send job status notifications to.

e Now, we want to transfer your 1ab_5 folder from your local machine up to NOTS so that we can submit
the Lab 5 code to the cluster for testing. NOTE: You must place your 1lab_5 folder directly inside of
your $HOME directory, so that the absolute path to it is /home/[net-id]/lab_5. To transfer a folder
to NOTS, you can use one of two methods:

— Use Subversion: You can commit your local changes to SVN. Then you can checkout or update
the project on your NOTS account using one of the following;:

svn checkout https://svn.rice.edu/r/comp322/turnin/S16/NETID/lab_5/
or, if you have already checked out the SVN project on your account,

svn update
The svn checkout command must be run from your $HOME directory.

— Use SCP: Use the following command on your local machine to transfer your lab_5 folder to
NOTS:

scp -r /local/path/to/lab 5 [your-net-id]@nots.rice.edu:~/

e Now that we have edited the Lab 5 job script and uploaded the Lab 5 folder to NOTS, we can submit
a test job to the cluster. To submit the job, run the following command on NOTS:

sbatch /path/to/my/lab_5/src/main/resources/myjob.slurm
After you have submitted the job, you should see the following;:
Submitted batch job [job number]
e To check the status of a submitted job, use the following command:
squeue -u [your-net-id]
If no jobs are listed, you have no running jobs.

e It may take some time for your job to make it through the job queue and get assigned a compute node.
If you would like to see an estimate of when your job will start, you can add the --start flag to the
squeue command:

squeue -u [your-net-id] --start

3of 7

COMP 322 Lab 5: Loop Chunking and Barrier Synchronization
Spring 2016

Note that adding --start will only show jobs that are pending and have not started yet. If your job
is already running, you will see it listed under squeue -u [net-id] but not squeue -u [net-id]
—--start.

e To cancel a submitted job, use the following command:
scancel [job-id]

When your job finishes running, your should see an output file titled slurm-[job-id] . out in the same
directory from which you submitted the job. This file contains the output produced by your job during
its execution on a dedicated compute node. You can either transfer these output files back to your
laptop for viewing, or use a tool on the cluster to open them (such as cat, less, emacs, or vim).

2 A Quick Introduction to Useful Shell Commands

As we move more into using NOTS to measure real-world performance, being comfortable with the shell will
become more and more useful in 322. This section briefly introduces you to the most commonly used shell
commands. There are no required “tasks” or “goals” for this section beyond improving your awareness of
these commands. However, you are encouraged to play with these commands in your own terminal (on your
laptop or on NOTS) to help build familiarity. We have provided a sample set of exercises at the end of this
section that you can use to help learn the commands.

Linux relies heavily on the abundance of command line tools. Most input lines entered at the shell prompt
have three basic elements: command, options, and arguments. The command is the name of the program
you are executing. It may be followed by one or more options (or switches) that modify what the command
may do. Options usually start with one or two dashes, for example, —-p or —-print, in order to differentiate
them from arguments, which represent what the command operates on. The interested student is encouraged
to view Chapter 7 in the LinuzFoundationX: LFS101x.2 Introduction to Linuz course on edX for a more
thorough introduction on the commands covered in lab today.

In order to help you organize your files, your file system contains special files called directories. A directory is
a logical section of a file system used to hold files. Directories may also contain other directories. Directories
are separated by a forward slash (/). The current directory, regardless of which directory it is, is represented
by a single dot (.). The parent directory of the current directory (i.e., the directory one level up from the
current directory) is represented by two dots (..). Your home directory is the directory you are placed in, by
default, when you open a new terminal session. It has a special representation: a tilde followed by a slash
/)

Below are some of the most used commands, along with brief descriptions of each.

2.1 pwd

pwd means “print working directory”. It is used to output the path of the current working directory.

2.2 mkdir

mkdir means “make directory” and is used to create new directories. It creates the directory(ies), only if
they do not already exist. Use the —-p flag to ensure parent directories are created as needed.

2.3 cd

cd means “change directory”. The cd command is used to change the current working directory. It can
be used to change into a subdirectory, move back into the parent directory, move all the way back to the
root directory, or move to any given directory. When the first character of a directory name is a slash, that
denotes that the directory path begins in the root directory.

40of 7

COMP 322 Lab 5: Loop Chunking and Barrier Synchronization
Spring 2016

2.4 s

1s means “list directory”. The 1s command lists out the contents of the directory you are currently in. You
can use cd to change into different directories and then list what’s in them so I know which directory to go
to next.

2.5 dirs, pushd and popd

pushd means “push directory”. popd means “pop directory”. Both commands are used to work with the
command line directory stack. The pushd command saves the current working directory in memory so it
can be returned to at any time, optionally changing to a new directory. The popd command returns to the
path at the top of the directory stack. This directory stack can be viewed by the command dirs.

2.6 rm

rm means “remove”’. Directories and files can be removed (deleted) with the rm command. By default,
it does not remove directories. If the -r (--recursive) option is specified, however, rm will remove any
matching directories and their contents. Use the -f (--force) option to never be prompted while files are
being removed. The -v (--verbose) option can be used to get rm to detail successful removal actions.

2.7 cp

cp means “copy a file or directory”. The command has three principal modes of operation, expressed by
the types of arguments presented to the program for copying a file to another file, one or more files to a
directory, or for copying entire directories to another directory. The commands takes two arguments, source
and destination files, which may reside in different directories. You can use cp to copy entire directory
structures from one place to another using the -R option to perform a recursive copy. Using this option
copies all files, and all subdirectories from the source to the destination directory. you can specify multiple
files as the source, and a directory name as the destination.

2.8 mv

mv means “move a file or directory”. It moves one or more files or directories from one place to another, it
is also used to rename files. When a filename is moved to an existing filename (in the same directory), the
existing file is deleted. Use the -f (--force) option to never be prompted before overwriting existing files.
The -v (--verbose) option can be used to get details on the actions and destination locations of the files
being moved.

2.9 touch

The touch command is used to make an empty file. The touch command is the easiest way to create new,
empty files. Touch eliminates the unnecessary steps of opening the file, saving the file, and closing the file
again. It is also used to change the timestamps on existing files and directories.

2.10 less

It is used to view (but not change) the contents of a text file one screen at a time. Unlike most Unix text
editors/viewers, less does not need to read the entire file before starting, resulting in faster load times with
large files. You can open a file by passing the file name as an argument to the command. To traverse the
file press the following, use the down arrow to scroll down one line while using the up arrow scrolls up one
line. Using q will exit the less command.

2.11 cat

The cat command prints the contents of a file to screen and can be used to concatenate and list files.
The name is an abbreviation of catenate, a synonym of concatenate. cat will concatenate (put together)
the input files in the order given, and if no other commands are given, will print them on the screen as
standard output. It can also be used to print the files into a new file as follows: cat oldl.txt old2.txt >
newfile.txt Typing the command cat followed by the output redirection operator and a file name on the
same line, pressing ENTER to move to the next line, then typing some text and finally pressing ENTER

50f 7

COMP 322 Lab 5: Loop Chunking and Barrier Synchronization
Spring 2016

again causes the text to be written to that file. The program is terminated and the normal command prompt
is restored by pressing the CONTROL and d keys simultaneously.

2.12 find

The find command is a very useful and handy command to search for files from the command line. find
will search any set of directories you specify for files that match the supplied search criteria. You can search
for files by name, owner, group, type, permissions, date, and other criteria. The search is recursive in that
it will search all subdirectories too. All arguments to find are optional, and there are defaults for all parts.

2.13 grep

The grep command is used to search text or searches the given file for lines containing a match to the given
strings or words. Its name comes from the ed command g/re/p (globally search a regular expression and
print), which has the same effect: doing a global search with the regular expression and printing all matching
lines. By default, grep displays the matching lines. You can force grep to ignore word case with the -i
option.

2.14 man

The man command is used to format and display the system’s reference manuals. The man pages are a user
manual; they provide extensive documentation about commands. Each argument given to man is normally
the name of a program, utility or function. man is most commonly used without any options and with only
one keyword. The keyword is the exact name of the command or other item for which information is desired,
e.g. man 1s.

2.15 Example Shell Exercises
1. Print the directory on NOTS where your lab_7 project has been checked out.

2. Change the directory to src/main/resources/commands.

Print the contents of the current directory, you should be able to see three .txt files.

- W

Use the 1less command to view the contents of the text files.

o

Create a directory called work in the current directory.
Use the pushd command and change to the work directory.
Use the pwd command to confirm you are inside the work directory.

Print the contents of the current directory, you should see no files.

© ® N o

Create an empty file called loremipsum. txt using the touch command.

10. Use the cat command to copy the text from lorem. txt and lorem.txt files in the src/main/resources/commands
directory into the loremipsum.txt file.

11. Use the mv command to move the loremipsum.txt file into the src/main/resources/commands di-
rectory.

12. Print the contents of the current directory (work), you should see no files if the move has been successful.

13. Now use the cp command to copy all the *.txt files from the commands directory into the work
directory.

14. Use the popd command to switch to the commands directory.
15. Delete all the files whose names start with lor* only in the current directory.

16. Use the pushd command and change to the work directory.

6 of 7

COMP 322 Lab 5: Loop Chunking and Barrier Synchronization
Spring 2016

3

17.
18.
19.

Use the grep command to find the *.txt files which contain the text ma.
Use the find command to find the files whose name contain the text sum.

Use the find command to find the files whose name contain the text lor and move them to the
src/main/resources/commands directory.

One-Dimensional Iterative Averaging

Now, getting back to parallelism. Back on your laptop, the code provided in OneDimAveraging.java per-
forms the iterative averaging computation discussed in the lectures (see Lecture 11). This code performs a
sequential version of the computation in method runSequential (). Iterative averaging is performed on a
one-dimensional array of size (n+2) with elements 0 and n+1 initialized to 0 and 1 respectively. The final
value expected for each element ¢ at convergence is i/(n + 1). However, we limit iterations to a constant
value to prevent long execution times so you may not reach convergence.

4

1.

2.

Your assignment is to create four parallel versions of OneDimAveraging. runSequential () that imple-
ment the same one-dimenstonal iterative averaging algorithm but using parallel HJlib constructs:

(a) runParallelForSeqForall: Use an outer forseq/for loop to iterate over iterations and an
inner forall loop to compute myNew in parallel.

(b) runParallelForSeqForallChunked: Use an outer forseq/for loop to iterate over iterations
and an inner forallChunked loop to compute myNew in parallel.

(c) runParallelForAllForSeq: Use an outer forallPhased loop to parallelize across myNew and use
a forseq/for loop inside it along with phased barriers to iterate over iterations.

(d) runParallelForAllChunkedForSeq: Use an outer forallPhased loop with chunking to paral-
lelize across myNew and use a forseq/for loop inside it along with phased barriers to iterate over
iterations.

You can implement and test these four versions of the one-dimensional iterative averaging algorithm
locally on your laptop, but to complete the lab you must also upload your project to NOTS (like you
did in Section 1) and run it in a compute job to evaluate the performance of the different parallelization
approaches. The goal of today’s lab is not to maximize speedup, but to simply observe and reason
about the relative performance of these four parallel versions.

Turning in your lab work

For Lab 5, you will need to turn in your work before leaving, as follows.

1.

Show your work to an instructor or TA to get credit for this lab. In particular, the TAs will be
interested in seeing your code for the four approaches to parallelizing runSequential, and the output of
a NOTS job running your implementation. You should be thinking about why different parallelization
techniques run faster or slower, in particular the differences between chunked and non-chunked forall
loops and the difference between using barriers and not.

Commit your work to your lab_5 turnin folder. The only changes that must be committed are your
modifications to OneDimAveraging. java. Check that all the work for today’s lab is in your 1ab_5 direc-
tory by opening https://svn.rice.edu/r/comp322/turnin/S16/NETID/1lab_5/ in your web browser
and checking that your changes have appeared.

7of 7

https://svn.rice.edu/r/comp322/turnin/S16/NETID/lab_5/

	NOTS setup
	A Quick Introduction to Useful Shell Commands
	pwd
	mkdir
	cd
	ls
	dirs, pushd and popd
	rm
	cp
	mv
	touch
	less
	cat
	find
	grep
	man
	Example Shell Exercises

	One-Dimensional Iterative Averaging
	Turning in your lab work

