COMP 322: Fundamentals of
Parallel Programming

Lecture 8: Data Races, Functional &
Structural Determinism

Vivek Sarkar, Shams Imam
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu

http://comp322.rice.edu
COMP 322 Lecture 8 29 January 2016 @

Worksheet #7 solution:
Associativity and Commutativity

Recap:
A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)).
A binary function f is commutative if f(x,y) = f(y,x).

Worksheet problems:

1) Claim: a Finish Accumulator (FA) can only be used with operators that are
associative and commutative. Why? What can go wrong with accumulators
if the operator is non-associative or non-commutative?

You may get different answers in different executions if the operator is non-
associative or non-commutative e.g., an accumulator can be implemented
using one “partial accumulator” per processor core.

2) For each of the following functions, indicate if it is associative and/or
commutative.

a) f(x,y) = x+y, for integers x, y, is associative and commutative

b) g(x,y) = (x+y)/2, for integers X, y, is commutative but not associative

= Incorrect answers found in some worksheets: Associative / Both / Neither

c) h(s1,s2) = concat(s1, s2) for strings s1, s2, e.g., h(“ab”,”cd”) = “abcd”, is
associative but not commutative
= Incorrect answers found in some worksheets: Commutative / Neither

2 COMP 322, Spring 2016 (V. Sarkar, S. Imam) @



Parallel Programming Challenges

o Correctness
— New classes of bugs can arise in parallel programming, relative to
sequential programming
- deadloc
¢ Performance
— Performance of parallel program depends on underlying parallel system
- Language compiler and runtime system

- Processor structure and memory hierarchy
— Degree of parallelism in program vs. hardware

e Portability

— A buggy program that runs correctly on one system may not run correctly
on another (or even when re-executed on the same system)

— A parallel program that performs well on one system may perform poorly on
another

3 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Example of a Data Race

// Start of Task TO (main program)
suml = 0; sum2 = 0; // suml,sum2 are static/object fields
async { // Task Tl computes sum of upper half of array
for (int i=X.length/2; i < X.length; i++)
sum2 += X[i];
}
// Continue in TO and compute sum of lower half of array

for(int i=0; i < X.length/2; i++) suml += X[i];

VPN O A WN R

return suml + sum2;

Data race between accesses of sum2 in async and in main program

4 COMP 322, Spring 2016 (V. Sarkar, S. Imam)



Data Races (Recap from Lecture 2)

A data race occurs on location L in a program execution with
computation graph CG if there exist steps (nodes) S1 and S2 in CG
such that:

1. S1 does not depend on S2 and S2 does not depend on S1, i.e., S1
and S2 can potentially execute in parallel, and

2. Both S1 and S2 read or write L, and at least one of the accesses is
a write.

 Adata-race is an error. The result of a read operation in a data race
is undefined. The result of a write operation is undefined if there are
two or more writes to the same location.

A program is data-race-free it cannot exhibit a data race for any input

e Above definition includes all “potential” data races i.e., we consider
it to be a data race even if S1 and S2 are scheduled on the same
processor.

5 COMP 322, Spring 2016 (V. Sarkar, S. Imam) %i}

Functional vs. Structural Determinism

o A parallel program is said to be functionally
deterministic if it always computes the same answer
when given the same input

o A parallel program is said to be structurally
deterministic if it always produces the same
computation graph when given the same input

o Data-Race-Free Determinism Property

—If a parallel program is written using the constructs
learned so far (finish, async, futures) and is known to
be data-race-free, then it must be both functionally
deterministic and structurally deterministic

6 COMP 322, Spring 2016 (V. Sarkar, S. Imam) %i}



Example: Sequential search for pattern
in text

1. for (int i = 0; i <= N - M; i++) {

2 for (j = 0; j < M; j++) {

3 if (text[i+j] != pattern[j]) break;
4 } // for j

5. if (j == M) {

6 // pattern found

7 // update flag/count/index as needed
8
9

// exit for-i loop if needed

10. 1}
11.}y // for i

A
COMP 322, Spring 2016 (V. Sarkar, S. Imam) %}

Version 1 of Parallel Search:
Count of all occurrences

1. // Count all occurrences
2. a = new Accumulator (SUM, int)
3. finish(a) {

4, for (int ii = 0; ii <= N - M; ii++) {

b. int i = ii;

6. async {

7. for (j = 0; j < M; j++)

8. if (text[i+j] != pattern[j]) break;

9. if (j == M) a.put(l); // Increment count
10. } // async

11. }

12.} // finish
13.print a.get(); // Output

A
COMP 322, Spring 2016 (V. Sarkar, S. Imam) %}



Version 2 of Parallel Search:
Existence of an occurrence

1. found = false; // object or static field
2. finish for (int i = 0; i <= N - M; i++)
3. async {
4 for (j = 0; j < M; j++)
5. if (text[i+j] != pattern[j]) break;
6 if (j == M) found = true;
7. } // finish-for-async
8. print found // Output
9 COMP 322, Spring 2016 (V. Sarkar, S. Imam) %}
Version 3 of Parallel Search:
Index of an occurrence
1. index = -1; // object or static field
2.
3. finish for (int i = 0; i <= N - M; i++)
4., async {
5. for (j = 0; j < M; j++)
6. if (text[i+j] != pattern[j]) break;
7. if (j == M) index = i; // found at i
8. } // finish-for-async
9. print index // Output

10

COMP 322, Spring 2016 (V. Sarkar, S. Imam) %}



Version 4 of Parallel Search:
Optimized existence of an occurrence

found = false; // object or static field

. finish for (int i = 0; 1 <= N - M; i++) {

if (found) break; // Optimization!

1.

2

3

4

5. async {
6 for (j = 0; j < M; j++)

7 if (text[i+j] != pattern[j]) break;
8 if (j == M) found = true;

9 } // async

10. } // finish-for

11 COMP 322, Spring 2016 (V. Sarkar, S. Imam) %}
Version 5 of Parallel Search:
Optimized index of an occurrence

1. index = -1; // // object or static field
2.
3. finish for (int i = 0; i <= N - M; i++) {
4, if (index != -1) break; // Optimization!
5. async {
6. for (j = 0; j < M; j++)
7. if (text[i+j] != pattern[j]) break;
8. if (j == M) index = i;
0. } // async

10. } // finish-for

12

COMP 322, Spring 2016 (V. Sarkar, S. Imam) %}



