
COMP 322: Fundamentals of
Parallel Programming

Lecture 25: Concurrent Objects and the
Linearizability Property

COMP 322 Lecture 25 18 March 2016

Vivek Sarkar, Shams Imam
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu, shams.imam@twosigma.com

http://comp322.rice.edu/

Worksheet #24 solution:
Bounded Buffer Example

Consider the case when multiple threads call insert() and remove() methods
concurrently for a single BoundedBuffer instance with SIZE >= 1.

1) Can you provide an example in which the wait set includes a thread waiting
at line 2 in insert() and a thread waiting at line 11 in remove(), in slide 11? If
not, why not?

No, only producer threads enter the wait set when the buffer is full, and only
consumer threads enter the wait set when the buffer is empty

2) How would the code behave if all wait/notify calls (lines 2, 6, 11, 15) were
removed from the insert() and remove() methods in slide 11?

insert() may overwrite existing elements when buffer is supposed to be full

remove() may return undefined values when buffer is supposed to be empty

2 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Concurrent Objects
• A concurrent object is an object that can correctly handle methods

invoked concurrently by different tasks or threads
— Also referred to as “thread-safe objects”
— e.g., AtomicInteger, ConcurrentHashMap, BoundedBuffer, …

• For the discussion of linearizability, we will assume that the body of
each method in a concurrent object is itself sequential
— Assume that methods do not create child async tasks

• Implementations of methods can be serialized (e.g., using
synchronized or object-based isolated statements) or can be
concurrent (e.g., by using read-write modes in object-based isolation)

• A desirable goal is to develop implementations that are concurrent for
performance while being as close to the semantics of the serial
version as possible

3 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Correctness of a
Concurrent Object

• Consider a simple FIFO (First In, First Out) queue as a canonical
example of a concurrent object
— Method q.enq(o) inserts object o at the tail of the queue

– Assume that there is unbounded space available for all enq()
operations to succeed

— Method q.deq() removes and returns the item at the head of the
queue.
– Throws EmptyException if the queue is empty.

• What does it mean for a concurrent object like a FIFO queue to be
correct?
— What is a concurrent FIFO queue?
— FIFO implies a strict temporal order
— Concurrent implies an ambiguous temporal order

4 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Linearization: identifying a sequential order of
concurrent method calls

time

q.deq():x

q.enq(x)

 enq(x) deq() returns x

 isolated-wait/begin isolated-end

isolated-wait/begin isolated-end

“Linearizability” --
sequence of enq() and
deq() calls is consistent
with sequential execution

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

5 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Task T1

Task T2

Informal definition of Linearizability

• Assume that each method call takes effect “instantaneously”
at some point in time between its invocation and return.

• An execution (schedule) is linearizable if we can choose one
set of instantaneous points that is consistent with a sequential
execution in which methods are executed at those points
• It’s okay if some other set of instantaneous points is not

linearizable
• A concurrent object is linearizable if all its executions are

linearizable
• Linearizability is a “black box” test based on the object’s

behavior, not its internals

6 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Example 1

time

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

7 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Task T1

Example 1 (contd)

time

q.enq(x)

q.enq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

8 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Task T1

Task T2

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

9 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Task T1

Task T2

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq():y

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

10 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Task T1

Task T2

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq():y

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

11 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Task T1

Task T2

linearizable(2)

(1)

(3)

(4)

Example 2: is this execution
linearizable?

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

12 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Task T1

Task T2

not linearizable

q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

Example 3
Is this execution linearizable? How many possible linearizations
does it have?

13 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

linearizable

(two possible linearizations)

Example 4: execution of an isolated
implementation of FIFO queue q

Is this a linearizable execution?

14 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Yes! Can be linearized as “q.enq(x) ; q.enq(y) ; q.deq():x”.

Example 5: execution of a concurrent
implementation of a FIFO queue q

Is this a linearizable execution?

15 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Yes! Can be linearized as “q.enq(x) ; q.enq(y) ; q.deq():x”.

Linearizability of Concurrent Objects
(Summary)

Concurrent object
• A concurrent object is an object that can correctly handle methods

invoked in parallel by different tasks or threads
— Examples: concurrent queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at some

distinct point in time between its invocation and return.
• An execution is linearizable if we can choose instantaneous points

that are consistent with a sequential execution in which methods are
executed at those points

• An object is linearizable if all its possible executions are linearizable

16 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

