COMP 322: Fundamentals of
Parallel Programming

Lecture 26: Linearizability (contd),
Java locks

Vivek Sarkar, Shams Imam
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu, shams.imam@twosigma.com

http://comp322.rice.edu/

COMP 322 Lecture 26 21 March 2016

Solution to Worksheet #25:
Linearizability of method calls on a concurrent object

Is this a linearizable execution for a FIFO queue, q?

Time | Task A Task B

0 Invoke q.enq(x)

1 Return from q.enq(x)

2 Invoke q.enq(y)

3 Invoke q.deq() Work on q.enq(y)

4 Work on q.deq() Return from q.enq(y)
5

Return y from q.deq()

No! q.enq(x) must precede g.enq(y) in all linear sequences of
method calls invoked on q. It is illegal for the q.deq() operation to
returny.

2 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Linearizability of Concurrent Objects
(Summary)

Concurrent object

A concurrent object is an object that can correctly handle methods
invoked in parallel by different tasks or threads

— Examples: concurrent queue, Atomicinteger

Linearizability

Assume that each method call takes effect “instantaneously” at some
distinct point in time between its invocation and return.

An execution (schedule) is linearizable if we can choose
instantaneous points that are consistent with a sequential execution
in which methods are executed at those points

An object is linearizable if all its possible executions are linearizable

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Why is Linearizability important?

cCUAwN S

Linearizability is a correctness condition for
concurrent objects

For example, is the following implementation of
Atomicinteger.getAndincrement() linearizable?

- Motivation: many processors provide hardware
support for get() and compareAndSet(), but not
for getAndAdd()

public final int getAndIncrement() {
int current = get();
int next = current + 1;
compareAndSet (current, next);
return current;

»H

COMP 322, Spring 2016 (V. Sarkar, S. Imam) S,

A Linearizable Implementation of
getAndincrement() using compareAndSet()

public final int getAndIncrement() {
while (true) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
// success! : :
return current;

VWONOO AW =

C&S:o = |§,|e return

C&S = false

getAndInc():0 must

occur before C&S = Té'ue
L] '
getAndInc():1 for &8 !. '\

linearizability

getAndInc():0 getAndInc():1

5 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Locks and Conditions
in java.util.concurrent library

¢ Atomic variables

— Key primitives for writing lock-free algorithms

— Can be used from HJlib programs without any restrictions
¢ Concurrent Collections

— Queues, blocking queues, concurrent hash map, ...

— Only nonblocking methods can safely be used from HJlib

Locks and Conditions (focus of today’s lecture)
— More flexible synchronization control
— Read/write locks

¢ Executors, Thread pools and Futures

— Execution frameworks for asynchronous tasking

— Low-level APIs used to implement HJlib and Java ForkJoin framework
e Synchronizers: Semaphore, Latch, Barrier, Exchanger

— Ready made tools for thread coordination

— Low-level APIs used to implement HJlib and Java ForkJoin framework

6 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Unit 7.3: Locks

Use of monitor synchronization is just fine for most
applications, but it has some shortcomings

Single wait-set per lock

No way to interrupt or time-out when waiting for a lock

Locking must be block-structured
Inconvenient to acquire a variable number of locks at once

Advanced techniques, such as hand-over-hand locking,
are not possible

Lock objects address these limitations
But harder to use: Need £inally block to ensure release
So if you don’t need them, stick with synchronized

Example of hand-over-hand locking:
* Ll.lock() .. L2.lock() ... L1.unlock() ... L3.lock() .. L2.unlock() ...

=

7 COMP 322, Spring 2016 (V. Sarkar, S. Imam) %\‘3
java.util.concurrent.locks.Lock interface
1. idnterface Lock {
2. // key methods
3. void Tock(); // acquire Tock
4. void unlock(); // release lock
5. boolean tryLock(); // return false if lock 1is not obtained
6. boolean tryLock(long timeout, TimeUnit unit)
7. throws InterruptedException
8. Condition newCondition(); // associate a new condition
9. // variable with the lock
}
o java.util.concurrent.locks.Lock interface is implemented by
java.util.concurrent.locks.ReentrantLock class
8 COMP 322, Spring 2016 (V. Sarkar, S. Imam) %\‘3

Simple ReentrantLock() example

Used extensively within java.util.concurrent

final Lock lock = new ReentrantLock() ;

lock.lock () ;
try {
// perform operations protected by lock

catch (Exception ex) {
// restore invariants & rethrow

}

finally {
lock.unlock() ;

}

Must manually ensure lock is released

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

java.util.concurrent.locks.condition interface

Can be allocated by calling ReentrantLock.newCondition()
¢ Supports multiple condition variables per lock

* Methods supported by an instance of condition

— void await() // NOTE: like wait() in synchronized statement
- Causes current thread to wait until it is signaled or interrupted
- Variants available with support for interruption and timeout

— void signal() // NOTE: like notify() in synchronized statement
- Wakes up one thread waiting on this condition

— void signalAll() // NOTE: like notifyAll() in synchronized statement
- Wakes up all threads waiting on this condition

¢ For additional details see

— http://download.oracle.com/javase/1.5.0/docs/apiljavalutil/
concurrent/locks/Condition.html

10

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

BoundedBuffer example using two
conditions, notFull and notEmpty

1. class BoundedBuffer {

2. final Lock Tock = new ReentrantLock();

3. final Condition notFull = Tock.newCondition();
4, final Condition notEmpty = lock.newCondition(Q);
5.

6. final Object[] items = new Object[100];

7. int putptr, takeptr, count;

8.

9.

11 COMP 322, Spring 2016 (V. Sarkar, S. Imam) %ﬁ
BoundedBuffer example using two
conditions, notFull and notEmpty (contd)

10. public void put(Object x) throws
InterruptedException

11. {

12. Tock.lock();

13. try {

14. while (count == items.length) notFull.await();

15. items[putptr] = x;

16. if (++putptr == items.length) putptr = 0;

17. ++count;

18. notEmpty.signal();

19. } finally {

20. Tock.unlock();

21. }

22. }

e
12 COMP 322, Spring 2016 (V. Sarkar, S. Imam) %

BoundedBuffer example using two
conditions, notFull and notEmpty (contd)

23. public Object take() throws InterruptedException
24. {

25. Tock.lock();

26. try {

27. while (count == 0) notEmpty.await();
28. Object x = items[takeptr];

29. if (++takeptr == items.length) takeptr = 0;
30. --count;

31. notFull.signal();

32. return x;

33. } finally {

34. Tock.unlock();

35. }

36. }

13 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Reading vs. writing

e Recall that the use of synchronization is to protect interfering accesses
— Concurrent reads of same memory: Not a problem
— Concurrent writes of same memory: Problem
— Concurrent read & write of same memory: Problem

So far:

— If concurrent write/write or read/write might occur, use synchronization to ensure
one-thread-at-a-time

But:

— This is unnecessarily conservative: we could still allow multiple simultaneous
readers (as in object-based isolation)

Consider a hashtable with one coarse-grained lock
— Only one thread can perform operations at a time
But suppose:

— There are many simultaneous 1ookup operations and insert operations are
rare

14 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

java.util.concurrent.locks.ReadWriteLock
interface

interface ReadWritelock {
Lock readLock() ;
Lock writeLock() ;
}
e Even though the interface appears to just define a pair of locks, the
semantics of the pair of locks is coupled as follows
— Case 1: a thread has successfully acquired writeLock().lock()
— No other thread can acquire readLock() or writeLock()
— Case 2: no thread has acquired writeLock().lock()
— Multiple threads can acquire readLock()
— No other thread can acquire writeLock()
e java.util.concurrent.locks.ReadWriteLock interface is implemented
by java.util.concurrent.locks.ReadWriteReentrantLock class

15 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Example code

class Hashtable<K,V> {

// coarse-grained, one lock for table
ReadWriteLock lk = new ReentrantReadWriteLock();
V lookup (K key) {
int bucket = hasher (key);
lk.readLock().lock(); // only blocks writers
. read array[bucket] ..
lk.readLock () .unlock();
}
void insert(K key, V val) {
int bucket = hasher (key);
lk.writeLock().lock(); // blocks readers and writers
. write array[bucket] ..
lk.writeLock() .unlock();

}
}

16 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

