COMP 322: Fundamentals of
Parallel Programming

Lecture 29: Actors (contd)

Vivek Sarkar, Shams Imam
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu, shams.imam@twosigma.com

http://comp322.rice.edu/

COMP 322 Lecture 29 18 March 2015

Worksheet #28 solution:
Interaction between £finish and actors

What would happen if the end-finish operation from slide 14 was
moved from line 13 to line 11 as shown below?

1. £finish(() -> {

2 int numThreads = 4;

3 int numberOfHops = 10;

4 ThreadRingActor[] ring = new ThreadRingActor[numThreads];

5. for(int i=numThreads-1;i>=0; i--) {

6 ring[i] = new ThreadRingActor(i); Deadlock: the end-finish

7 ring[i].start(); // like an async operation in line 11 waits
3. if (i < numThreads - 1) { for all the actors started in
9. ring[i].nextActor(ring[i + 1]); line 7 to terminate, but the
10. } o} actors are waiting for the
11. }); // finish message sequence
12.ring[numThreads-1] .nextActor (ring[0]); initiated in line 13 before
13.ring[0] .send (numberOfHops) ; they call exit().

2 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Recap of Actors

Rely on asynchronous

messaging
Message are sent to an actor / mailbox \
using its send () method J
Messages queue up in the —_ P
mailbox y domO)
Messages are processed by an N é)f
actor after it is started N
Messages are processed process
9 P local state one message
asynchronously at a time
* one at atime
* using the body of process ()
. A
3 COMP 322, Spring 2016 (V. Sarkar, S. Imam)),

Actor Hello World Example (Recap)

1. public class HelloWorld {
2. public static void main(final String[] args) {
3. finish(()-> {
4. EchoActor actor = new EchoActor();
5. actor.start(); // don’t forget to start the actor
6. actor.send("Hello"); // asynchronous send (returns immediately)
7 actor.send("World"); HJ Actor library preserves order of
8. actor.send(EchoActor.STOP_MSG) ; .
9. }i messages between same sender and receiver
10. }
11. private static class EchoActor extends Actor<Object> {
12. static final Object STOP_MSG = new Object();
13. private int messageCount = 0;
14. protected void process(final Object msg) {
15. if (STOP_MSG.equals(msg)) {
16. exit(); // never forget to terminate an actor
17. println("Message-" + messageCount + ": terminating.”);
18. } else {
messageCount += 1;
19. println("Message-" + messageCount + ": " + msg);
20 }})}
4 .
COMP 322, Spring 2016 (V. Sarkar, S. Imam) S,

Summary of HJlib Actor API

void process (MessageType theMsg) // Specification of actor’s “behavior” when processing

messages

void send(MessageType msg)

void start()

void onPreStart()

void onPostStart ()

void exit()

void onPreExit ()

void onPostExit ()

Il Later today

void pause()

/I Send a message to the actor

I/ Actor calls exit() to terminate itself
/I Convenience: specify code to be executed before actor is terminated
/I Convenience: specify code to be executed after actor is terminated

/I Cause the actor to start processing messages
Il Convenience: specify code to be executed before actor is started
Il Convenience: specify code to be executed after actor is started

/I Pause the actor, i.e. the actors stops processing messages in its mailbox

void resume() // Resume a paused actor, i.e. actor resumes processing messages in mailbox

See http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/runtime/actors/Actor.html for details

5 COMP 322, Spring 2016 (V. Sarkar, S. Imam) @
Simple Pipeline using Actors
A Stage-1 Stage-2 Stage-3
Simple
pipeline | Filter Simple Filter o Print
with even P'Pe“"e lowercase pu.pelme results
3 length with strings with
stages | strings stages stages
> > >
COMP 322, Spring 2016 (V. Sarkar, S. Imam) o

Pipeline and Actors

* Pipelined Parallelism
 Each stage can be represented as an actor

« Stages need to ensure ordering of messages while processing
them

* Slowest stage is a throughput bottleneck

- .
-

longer time

COMP 322, Spring 2016 (V. Sarkar, S. Imam) @

Motivation for Parallelizing Actors

* Pipelined Parallelism

* Reduce effects of slowest stage by introducing task
parallelism.

* Increases the throughput.

=
=l
=

shorter time

COMP 322, Spring 2016 (V. Sarkar, S. Imam) @

Parallelism within an Actor’s process()
method

Use finish construct within process () body and spawn child
tasks

Take care not to introduce data races on local state!

class ParallelActor extends Actor<Message> {
void process(Message msg) {
finish(() -> {
async(() -> { 81; });
async(() -> { 82; });
async(() -> { 83; });

7.
8.
9.

)i

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Example of Parallelizing Actors

1. class ArraySumActor extends Actor<Object> {

2. private double resultSoFar = 0;

3. @QOverride

4. protected void process(final Object theMsg) {

5. if (theMsg != null) {

6. final double[] dataArray = (double[]) theMsg;

7. final double localRes = doComputation(dataArray);

8. resultSoFar += localRes;

9. } else { ... }

10. }

11. private double doComputation(final double[] dataArray) {

12. final double[] localSum = new double[2];

13. finish(() -> { // Two-way parallel sum snippet

14. final int length = dataArray.length;

15. final int limitl = length / 2;

le6. async(() -> {

17. localSum[0] = doComputation(dataArray, 0, limitl);

18. }i

19. localSum[1l] = doComputation(dataArray, limitl, length);

20. b

21. return localSum[0] + localSum[1l];

22. }

23. }

10 i Eﬁg
COMP 322, Spring 2016 (V. Sarkar, S. Imam) S,

Parallelizing Actors in HJlib

 Two techniques:

— Use finish construct to wrap asyncs in message
processing body

* Finish ensures all spawned asyncs complete
before next message returning from process ()

— Allow escaping asyncs inside process () method

 WAIT! Won't escaping asyncs violate the one-
message-at-a-time rule in actors

» Solution: Use pause and resume

11 COMP 322, Spring 2016 (V. Sarkar, S. Imam) S,

State Diagram for Extended Actors with

Pause-Resume
start 'I STARTED exilt ‘
new A
O—| new | pausel resume | TERMINATED
| PauseD _ 1
exlt

* Paused state: actor will not process subsequent messages until it is
resumed

* Resume actor when it is safe to process the next message

+ Messages can accumulate in mailbox when actor is in PAUSED state (s
in NEW state)

12 COMP 322, Spring 2016 (V. Sarkar, S. Imam) %

Actors: pause and resume

« pause() operation:

* Is a non-blocking operation, i.e. allows the next statement to be
executed.

* Calling pause () when the actor is already paused is a no-op.

* Once paused, the state of the actor changes and it will no longer
process messages sent (i.e. call process (message)) to it until it is
resumed.

* resume () operation:

* Is a non-blocking operation.

* Calling resume () when the actor is not paused is an error, the HJ
runtime will throw a runtime exception.

. Moves the actor back to the STARTED state

* the actor runtime spawns a new asynchronous thread to start
processing messages from its mailbox.

133

COMP 322, Spring 2016 (V. Sarkar, S. Imam) o

Parallelizing Actors in HJlib

W 00 N 6o BT b W N K=

N S)
W N = O

* Allow escaping asyncs inside process|()

class ParallelActor2 extends Actor<Message> {

void process(Message msg) {

pause();
async (()
async (()
async(()

// process() will not be called until a resume() occurs
-> { S1; }); // escaping async

-> { 82; }); // escaping async

-> {

// This async must be completed before next message

// Can also use async-await if you want S3 to wait for S1 & S2

S3;

Y

resume();

14

COMP 322, Spring 2016 (V. Sarkar, S. Imam) o

Synchronous Reply using Pause/Resume

W W N o U B W N =

11.
12.
13.

. class SynchronousSenderActor

void process(Msg msg) {

Actors are asynchronous, sync. replies require blocking operations
We need notifications from recipient actor on when to resume
Resumption needs to be triggered on sender actor

Use DDFs and asyncAwait

. class SynchronousReplyActor
extends Actor<Message> { extends Actor<DDF> {

void process (DDF msg) {

otherActor.send(ddf);
pause(); // non-blocking
asyncAwait(ddf, () -> {

// process message
T responseResult = ...;
msg.put (responseResult);

1
2
3
4
DDF<T> ddf = newDDF(); 5. println("Message received");
6
7
8
9

T synchronousReply = ddf.get();
println("Response received"); 10. } }
resume(); // non-blocking

)i

12.} }

15

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

Actors in the Real World

Erlang - uses actors for high availability
Facebook chat service backend
Whatsapp messaging servers
Ericsson, Motorola, T-Mobile - call processing/SMS

RabbitMQ - high-performance enterprise messaging

Akka - distributed Actor library in Scala

TwoSigma - customized realtime Dashboards on huge
datasets

ResearchGate - distributed event/data propagation system
NBC - election reporting and analysis system

eBay - scalable web server monitoring and management

16

COMP 322, Spring 2016 (V. Sarkar, S. Imam)

