
COMP 322 Spring 2017

Lab 10: Message Passing Interface (MPI)
Instructor: Vivek Sarkar, Co-Instructor: Mackale Joyner

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

• Use MPI to distribute computation across multiple processes.

• Understand the parallelization of matrix-matrix multiply across multiple, separate address spaces.

• Complete an MPI implementation of matrix-matrix multiplication by filling in the correct communi-
cation calls.

1 Overview

In this lab you will use OpenMPI’s Java APIs to gain experience with distributed computing using MPI.
You will complete a dense matrix-matrix multiply implementation by filling in the missing MPI API calls in
a partial MPI program.

Lab Projects

The template code and Maven project for this lab are located at:

• https://svn.rice.edu/r/comp322/turnin/S17/NETID /lab 10

Please use the subversion command-line client or IntelliJ to checkout the project into appropriate directories
locally. For example, you can use the following command from a shell:

$ svn checkout https://svn.rice.edu/r/comp322/turnin/S17/NETID/lab_10 lab_10

If you plan to submit manually rather than through the autograder, you should also check out the project
on NOTS and complete the provided myjob.slurm file based on the contained TODOs.

For this lab, you will only be able to test your code on NOTS. It likely will not run locally. Local execution is
not supported as this lab depends on compiled third-party binaries and a complex development environment
that is only available on NOTS. However, if you choose, you will still be able to compile locally on your
laptop (to fix compile-time errors) if you import the project dependencies from the provided pom.xml file
into IntelliJ. See step 6 at:

https://wiki.rice.edu/confluence/display/PARPROG/Using+IntelliJ+to+Download+and+Run+lab_1

if you need to recall how to import dependencies from Maven into IntelliJ.

2 Matrix Multiply using MPI

Your assignment today is to fill in incomplete MPI calls in a matrix multiply example that uses MPI to
distribute computation and data across multiple processes. You should complete all the necessary MPI calls

1 of 2

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/Using+IntelliJ+to+Download+and+Run+lab_1


COMP 322
Spring 2017

Lab 10: Message Passing Interface (MPI)

in MatrixMult.java to make it work correctly. There are comments (TODOs numbered 1 to 14) in the
code that will help you with modifying these MPI calls. You can look at the slides for Lectures 28 and
29 for an overview of the MPI send() and recv() calls, and at https://fossies.org/dox/openmpi-2.1.0/
namespacempi.html for the API details.

The provided parallel matrix-matrix multiply example works as follows:

1. The master process (MPI.COMM WORLD.getRank() == 0) gets the size of the matrices to be multiplied
and the number of processes to use from the unit tests.

2. Each MPI process allocates its own input matrices (a, b) and output matrix (c). Note that this
code uses a flattened representation for matrices, i.e., a square matrix of size N × N is stored as a
one-dimensional array containing N2 elements.

3. The master process initializes its local copies of each matrix and transmits their contents to all other
MPI processes. At the same time the master process also assigns each process a set of matrix rows
which that process is responsible for processing.

4. Each MPI process computes the contents of its assigned rows in the final output matrix c.

5. The master process collects the results of each worker process back to a single node and shuts down.

3 Tip(s)

• There are only two provided unit tests. One runs a small experiment and prints the input and output
matrices to help with debugging. The other processes larger matrices and will be used to verify the
performance and correctness of your implementation.

• If you run through the autograder, you should ignore all errors related to the running of correctness
tests (because there are none for this lab).

• Note that all MPI send and recv APIs (e.g. https://fossies.org/dox/openmpi-2.1.0/classmpi_

1_1Comm.html#a7e913a77ef4b8b1975035792cde6d717) accept arrays as their buf argument. Even
when sending a single integer, you will need to box it as a singleton array. Passing scalars to the buf
argument is by far the most common error made on this lab.

• When running through the autograder, the performance of your code on 1, 2, 4, and 8 MPI processes
will be printed in the pane titled “Performance Tests (16 cores)”. It is safe to ignore any error warnings
that begin with “Java HotSpot(TM) 64-Bit Server VM warning”. As you scroll in that pane, look for
text similar to “Processing a 1024 x 1024 matrix with 1 MPI processes” followed a few lines later by
a print starting with “Time elapsed = ”. There will be sections that look like this for each number of
MPI processes, each of which include the time it took for your solution to run with that many MPI
processes.

4 Deliverables

Once you have completed the template MPI program by filling in the inter-process communication, submit
myjob.slurm to NOTS or submit your code to the autograder for a final run. The teaching staff will want to
see some performance improvement from 1 to 2 to 4 to 8 processes, before checking off a successful completion
of your lab.

2 of 2

https://fossies.org/dox/openmpi-2.1.0/namespacempi.html
https://fossies.org/dox/openmpi-2.1.0/namespacempi.html
https://fossies.org/dox/openmpi-2.1.0/classmpi_1_1Comm.html#a7e913a77ef4b8b1975035792cde6d717
https://fossies.org/dox/openmpi-2.1.0/classmpi_1_1Comm.html#a7e913a77ef4b8b1975035792cde6d717

	Overview
	Matrix Multiply using MPI
	Tip(s)
	Deliverables

