COMP 322 Spring 2018

Lab 4: Java’s ForkJoin Framework
Instructor: Mackale Joyner, Co-Instructor: Zoran Budimlié.
Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

e Understand basics of Java’s ForkJoin framework.

e Practice using Java’s ForkJoin framework.

Downloads
As with previous labs, the provided template project is accessible through your private SVN repo at:
https://svn.rice.edu/r/comp322/turnin/S18/NETID/lab_4

For instructions on checking out this repo through IntelliJ or through the command-line, please see the Lab
1 handout. The below instructions will assume that you have already checked out the lab_4 folder, and that
you have imported it as a Maven Project if you are using IntelliJ.

Note that for this lab we will be using standard Java features instead of HJlib. Therefore, there is no need
to add the -javaagent command line argument in IntelliJ for running this lab’s tests.

1 Summary of Java’s ForkJoin framework

Java has a built in ForkJoin framework which allows us to write parallel programs without the use of HJlib.
For the purposes of this lab, you will only need to use and understand a few of the ForkJoin concepts:

e ForkJoinPool: runs all the fork-join tasks in your program.
e RecursiveTask<V>: a fork-join task that returns a result of type V.
e RecursiveAction: a fork-join task that does not return a result.

e invokeAll(Collection<T>): when passed a Collection of either RecursiveTasks or RecursiveActions,
submits those tasks to the ForkJoinPool to run in parallel. Only returns once all parallel tasks have
completed, like a finish.

e RecursiveTask.join() or RecursiveAction.join(): returns the result of the task’s computation,
when complete.

Additional examples of parallel programs using the ForkJoin framework have been provided in the repository
for reference (ArraySum. java, ArrayDivide.java, and ArraySumFourWay.java).

1of 3


http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu

COMP 322 Lab 4: Java’s ForkJoin Framework
Spring 2018

2 Parallelizing Reciprocal ArraySum using Java’s ForkJoin frame-
work

In this lab, you will work on the Reciprocal Array Sum Problem, but use the standard Java ForkJoin
framework instead of HJlib. You can refer to the Demonstration Video for Topic 1.1 for a refresher on
Reciprocal Array Sum.

In this exercise you will use “chunking”, i.e. assigning the processing of multiple input data elements to
a single task. While achieving the maximal theoretical parallelism of Reciprocal Array Sum would require
assigning a single task to each input element, creating that many tasks on a real system would incur large
overheads. Therefore, below you are tasked with chunking the processing of many input elements together
in each task.

Your goals for this assignment are as follows:

1. Modify the ReciprocalArraySumTask.compute() method to implement behavior for a single
ReciprocalArraySumTask. This method should sequentially compute the reciprocal sum of values
in the input array, from startIndexInclusive to endIndexExclusive. The sum should be saved in
value.

If your implementation of compute() is correct, both testParSimple tests in

ReciprocalArraySumPerformanceTest should pass.

2. Modify the ReciprocalArraySum.parManyTaskArraySum() method to implement the reciprocal-
array-sum computation in parallel using Java’s ForkJoin framework, using a given num-

ber of tasks. You should first read and understand the provided implementation of
ReciprocalArraySum.parArraySum(), which uses only two tasks. Base your code off
of parArraySum(), since the ForkJoin contructs used are the same. Note that the

getChunkStartInclusive and getChunkEndExclusive utility methods are provided for your con-
venience to help with calculating the region of the input array a certain task should process. If your
implementation of parManyTaskArraySum() is correct, both testParManyTask tests should also now
pass.

If you encounter an error saying java.lang.0OutOfMemoryError: Java heap space on your local machine,
you should try testing on the autograder. Your laptop may not have sufficient memory to run all tests.

3 Parallelizing N-Queens using Java’s ForkJoin framework

This week we will revisit the simple N-Queens problem (i.e., how can we place N queens on an N x N
chessboard so that no two queens can capture each other?) introduced in Lecture 7 and in Lab 3. You
will modify the NQueensForkJoin.compute() method, which should use Java’s ForkJoin Framework to
parallelize the N-Queens computation. The sequential pieces of the code have been provided, and there
are TODOs guiding you on where to place your edits. In IntelliJ, you can automatically find all TODOs
by going to View > Tool Windows > TODO. You can test your implementation by running the tests in
NQueensForkJoinPerformanceTest. java.

4 Demonstrating and submitting in your lab work

For this lab, you will need to demonstrate and submit your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab. They will want to see your files

2 0f 3


https://www.youtube.com/watch?v=pANGm8KqOG0&feature=youtu.be

COMP 322 Lab 4: Java’s ForkJoin Framework
Spring 2018

submitted to Subversion in your web browser and the passing unit tests on your laptop or on the
autograder.

2. Check that all the work for today’s lab is in your lab_4 directory by opening https://svn.rice.

edu/r/comp322/turnin/S18/NETID/1lab_4/ in your web browser and checking that your changes have
appeared.

3of3


https://svn.rice.edu/r/comp322/turnin/S18/NETID/lab_4/
https://svn.rice.edu/r/comp322/turnin/S18/NETID/lab_4/

	Summary of Java's ForkJoin framework
	Parallelizing ReciprocalArraySum using Java's ForkJoin framework
	Parallelizing N-Queens using Java's ForkJoin framework
	Demonstrating and submitting in your lab work

