
COMP 322 Spring 2017

Lab 6: Data-Driven Futures and Phasers
Instructor: Vivek Sarkar, Co-Instructor: Mackale Joyner

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

• Experimentation with Data-Driven Futures with Abstract Metrics

• Experimentation with Phasers by measuring Real Performance on NOTS

Lab Projects

Today, we will start by using a Cholesky factorization example to learn about using Data Driven Futures.
We will compute performance for this part of the lab using abstract metrics.

Next, we will revisit the Iterative Averaging example to implement a point-to-point synchronization variant
using phasers. For this part, we will measure real performance on the NOTS cluster at Rice.

The Maven project for this lab is located in the following svn repository:

• https://svn.rice.edu/r/comp322/turnin/S17/NETID /lab 6

For instructions on checking out this repository through IntelliJ or through the command-line, please see
the Lab 1 handout. The below instructions will assume that you have already checked out the lab 6 folder,
and that you have imported it as a Maven Project if you are using IntelliJ.

1 Parallelization of Cholesky (using Data-Driven Tasks)

In linear algebra, the Cholesky factorization is a decomposition of a positive-definite matrix into the product
of a lower triangular matrix and its conjugate transpose. This decomposition is useful to efficiently obtain
numerical solutions, e.g., for a system of linear equations of the form A× x = b.

We have provided a sequential version of Cholesky Factorization in the CholeskyFactorization.java and
CholeskyFactorizationSequential.java files. Your goal will be to parallelize this computation using data-
driven tasks and data-driven futures, and to evaluate your parallelization using abstract metrics. The fact
that the sequential version uses a generic dataStore container can be leveraged to simplify this conversion.

Your assignment is to create a parallel version of CholeskyFactorizationSequential.runComputation()
that implements the Cholesky Factorization algorithm by using data-driven tasks:

1. Write a parallel version in the runComputation() method of the CholeskyFactorizationParallel.java
file using data-driven tasks with calls to asyncAwait(). The provided file has helpful hints to guide
you in this process.

2. For abstract metrics, note that CholeskyFactorizationParallel.java is already set up with zero
overhead for creating async tasks, as in Homework 1 (but not Homework 2).

3. Run the unit tests to verify whether your parallel computation achieves the required abstract metrics.

4. Record in lab 6 written.txt the best total work and the ideal parallelism relative to the sequential
version.

1 of 2

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu


COMP 322
Spring 2017

Lab 6: Data-Driven Futures and Phasers

2 One-Dimensional Iterative Averaging (with Phasers)

The code provided in OneDimAveraging.java performs the iterative averaging computation discussed in the
lectures. This code performs a sequential version of the computation in method runSequential() and a
chunked parallel version in runChunkedBarrier(). Iterative averaging is performed on a one-dimensional
array of size (n+2) with elements 0 and n+1 initialized to 0 and 1 respectively. The final value expected for
each element i at convergence is i/(n + 1). However, we limit iterations to a constant value to prevent
long execution times, so you may not see convergence if you examine the array elements in your lab exercise.

1. Your assignment is to create a parallel version of OneDimAveraging.runSequential() that implements
the same one-dimensional iterative averaging algorithm but using phasers instead of barriers.

2. Update the runChunkedPhaser() method by using the approach discussed today in Lecture 15. In
particular, pay attention to the phaser registration modes for your tasks. Also, you will need to use
chunking to obtain good performance in your programs.

3. You can implement the parallel version of the one-dimensional iterative averaging algorithm locally
on your laptop, but to complete the lab you must also run your project on NOTS to evaluate the
performance of the different parallelization approaches. You may do so manually using the provided
SLURM script, or by using the autograder. On NOTS, you should achieve ∼2x speedup relative to
the provided sequential version.

Note that these tests may take some time to run due to the size of the datasets being used.

3 Turning in your lab work

For lab 6, you will need to turn in your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab. In particular, the TAs will be
interested in seeing your code for the phaser-based version.

2. Commit your work to your lab 6 turnin folder. The only changes that must be committed are your
modifications to CholeskyFactorizationParallel.java and OneDimAveraging.java. Check that all
the work for today’s lab is in your lab 6 directory by opening

https://svn.rice.edu/r/comp322/turnin/S17/NETID/lab 6/

in your web browser and checking that your changes have appeared.

2 of 2


	Parallelization of Cholesky (using Data-Driven Tasks)
	One-Dimensional Iterative Averaging (with Phasers)
	Turning in your lab work

