
COMP 322 Spring 2017

Lab 7: Isolated Statements, Atomic Variables
Instructor: Vivek Sarkar, Co-Instructor: Mackale Joyner

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

• Gain experience with using the isolated construct introduced today in Lecture 20

• Gain experience with using atomic variables, also introduced today in Lecture 20

• Compare the performance of parallel implementations of spanning tree construction that use the iso-
lated construct and atomic variables with a sequential implementation

1 Spanning Tree Construction

The idea of a spanning tree was introduced/reviewed in Lecture 20. Given a connected and undirected graph
G consisting of:

1. A set of nodes N

2. A set of undirected edges E between pairs of nodes in N

3. An arbitrarily defined root node R in N for graph G

A spanning tree is a set of edges S in E that touch all nodes in N and contains no cycles (i.e. is a tree). To
have no cycles, we require that |S| be exactly |N| - 1.

One way to define a spanning tree over G is by defining a “parent” node for each node in N, with each node
having at most one parent and the root node R having no parents.

Constructing a spanning tree is generally formulated as a graph traversal algorithm, in which we start at the
root node R and through a depth-first traversal set the parent of each node if it has not already been set. If
it has already been set, we know we already explored that node.

Lecture 20 discussed how this algorithm can be parallelized.

2 Parallelization using Isolated Construct

The Maven project for this lab is located in the following svn repository:

https://svn.rice.edu/r/comp322/turnin/S17/NETID /lab 7

For instructions on checking out this repository through IntelliJ or through the command-line, please see
the Lab 1 handout. The below instructions will assume that you have already checked out the lab 7 folder,
and that you have imported it as a Maven Project if you are using IntelliJ.

First, we will parallelize spanning tree construction and use isolated to protect against concurrent accesses.

Recall the following constraints on isolated statements — an isolated statement may not contain any HJ
statement that can perform a blocking operation e.g., finish, future get(), and phaser next/wait.

1 of 2

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu

COMP 322
Spring 2017

Lab 7: Isolated Statements, Atomic Variables

A reference sequential implementing of spanning tree construction is provided in SpanningTreeSeq1.java.

Your first task is to implement parallel spanning tree construction by adding async, finish, and isolated
constructs as described in Lecture 20 to the template in SpanningTreeIsolated.java. There are guiding
TODOs in that file.

You can verify the correctness of your isolated version using the test Lab7CorrectnessTest.testIsolated.
Note that if you run the performance tests as provided you will likely see stack overflow errors.

3 Parallelization using Atomic Variables

Atomic Variables were also introduced in Lecture 20.

Your task in this section is to modify the SpanningTreeAtomic.java program to run spanning tree con-
struction in parallel and use atomic variables to protect against concurrent accesses, similar to how you
added isolated constructs to SpanningTreeIsolated.java. There are guiding TODOs in that file.

Like the previous section, you can verify the correctness of your atomic version using the test
Lab7CorrectnessTest.testAtomic.

You may find the AtomicReference class useful for this part of the lab.

4 Performance Evaluation on NOTS

The provided Lab7PerformanceTest.testIsolated and Lab7PerformanceTest.testAtomic tests will mea-
sure the performance of your parallel implementations running on 1 worker thread and running on N worker
threads, where N is the number of cores in the platform. These measurements will be performed on a graph
with 100,000 nodes and 100 neighbors per node. Use the provided myjob.slurm file or the autograder to test
the performance of your implementation on NOTS. Record the performance of both your isolated
and atomic versions in a lab 7 written.txt file in your lab 7 turnin directory. You can simply
copy-paste the test output if you like.

While you may not see a linear N× speedup on N cores for either parallel version, you should see some
improvement relative to the sequential version. If you do not see perfect linear speedup, you should
explain why in lab 7 written.txt based on your understanding of isolated and atomics, the way
you are using them in your implementation, and the general requirements of the spanning tree
algorithm.

5 Turning in your lab work

For lab 7, you will need to turn in your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab. In particular, the TAs will be interested
in seeing your changes for the isolated and atomic versions as well as the speedup you achieved relative
to one thread on NOTS.

2. Commit your work to your lab 7 turnin folder. The only changes that must be committed are
your modifications to SpanningTreeIsolated.java and SpanningTreeAtomic.java, as well as your
lab 7 written.txt file. Check that all the work for today’s lab is in your lab 7 directory by open-
ing https://svn.rice.edu/r/comp322/turnin/S17/NETID/lab 7/ in your web browser and checking
that your changes have appeared.

2 of 2

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicReference.html

	Spanning Tree Construction
	Parallelization using Isolated Construct
	Parallelization using Atomic Variables
	Performance Evaluation on NOTS
	Turning in your lab work

