
COMP 322 Spring 2017

Lab 9: Java Threads and Locks
Instructor: Vivek Sarkar, Co-Instructor: Mackale Joyner

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for today’s lab

• Experimentation with Java threads

• Experimentation with regular locks and read-write locks in Java

This lab can be downloaded from the following svn repository:

• https://svn.rice.edu/r/comp322/turnin/S17/NETID /lab 9

Use the subversion command-line client or IntelliJ to checkout the project into appropriate directories locally.

In today’s lab, you need to use NOTS to run performance tests. If you need any guidance on how to submit
jobs on NOTS manually or through the autograder, please refer to earlier labs or ask a member of the
teaching staff.

1 Conversion to Java threads: Spanning Tree

1. The SpanningTreeSeq.java program is an example sequential solution to the spanning tree problem.

The SpanningTreeAtomicHjLib.java program is a provided parallel solution to the minimum span-
ning tree problem. This version uses finish and async constructs along with an AtomicReference.

2. Your task is to convert SpanningTreeAtomicHjLib.java to a Java program that uses threads instead of
HJlib tasks. You should modify the provided SpanningTreeAtomicThreads.java file, and use Java
thread methods instead of finish/async. (The AtomicReference calls can stay unchanged.) As before,
you can include joins within each call to compute() for simplicity, or you can use a ConcurrentLinkedQueue
to collect child Thread objects for a more faithful simulation of a finish construct.

3. You have been provided with tests for your parallel spanning tree implementation in SpanningTreeP-
erformanceTest. To complete this portion of the lab, you should submit these performance tests to
NOTS by either modifying the provided myjob.slurm template and submitting manually, or through
the autograder. How does HJlib performance compare to using Java Threads? Which version is easier
to write and read?

2 Programming Tips and Pitfalls for Java Threads

• Remember to call the start() method on any thread that you create. Otherwise, the thread’s compu-
tation does not get executed.

• Since the join() method may potentially throw an InterruptedException, you will either need to enclose
each call to join() within a try-catch block, or add a throws InterruptedException clause to the definition
of the method that includes the call to join().

1 of 3

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu


COMP 322
Spring 2017

Lab 9: Java Threads and Locks

3 Sorted Linked List Example using Java’s Synchronized Methods

In today’s lab you will practice using Java Locks. Java Locks were introduced in Lecture 26. Note that
the sorted list exercises will not have a dependency on HJlib; you will not need the -javaagent

command line option in the run configurations you use in IntelliJ for these exercises.

In the provided code there are three files to focus on: SyncList.java, CoarseList.java, and RWCoarseList.java.

SyncList.java implements a thread-safe sorted linked list that supports contains(), add() and remove()

methods. The provided testSynchronized test in SortedListPerformanceTest.java repeatedly calls
these three methods with a distribution that aims for 99% read operations (calls to contains()) and 1%
add operations. Since all three methods are declared as synchronized in SyncList.java, all calls will be
serialized on a single SyncList object.

For this section, simply verify that you can compile and run the testSynchronized test locally using either
IntelliJ or Maven. This test (and the others for the following sections of this lab) tests the throughput in
operations per second of each concurrent list implementation with varying numbers of threads. The most
important metric printed is the “Operations per second”.

4 Use of Coarse-Grained Locking instead of Java’s Synchronized
Methods

The goal of this section is to replace the use of Java’s synchronized method in SyncList.java by using
explicit locking instead. For this section, your tasks are as follows:

1. Transfer the contents of the three functions contains, add, and remove from SyncList.java into
CoarseList.java.

2. Modify CoarseList.java to allocate a single instance of a ReentrantLock when creating an instance
of CoarseList. The term coarse locking is used for cases like this when a single lock is used to protect
the entire data structure, as opposed to fine-grained locking in which different locks may be used to
protect different components (e.g., nodes) in a data structure.

3. Replace the three occurrences of “synchronized” in SyncList by appropriate calls to lock() and
unlock() on the allocated ReentrantLock. Remember to use a try-finally block as follows to ensure
that unlock() is always called:

lock.lock();

try { ... }

finally { lock.unlock(); }

4. Compile and run the testCoarseGrainedLocking test in SortedListPerformanceTest.java. Com-
pare its performance to testing the provided synchronized version using testSynchronized. Is there
any difference? Do you expect any difference? Note that we are only running local tests at the moment,
so small variations in performance are expected.

5 Use of Read-Write Locks

The goal of this section is to replace the use of a ReentrantLock in CoarseList.java by a ReentrantReadWriteLock,
so as to leverage the fact that the majority of the operations (99% by default) are calls to contains() which
are read-only in nature and can execute in parallel with each other. For this section, your tasks are as
follows:

2 of 3



COMP 322
Spring 2017

Lab 9: Java Threads and Locks

1. Copy the contents of CoarseList.java into RWCoarseList.java.

2. Replace the instance of ReentrantLock by an instance of ReentrantReadWriteLock.

3. Replace the calls to lock() by readLock.lock() or writeLock.lock() where appropriate in RWCoarseList.java.
Likewise for unlock().

4. Compile and run the testReadWriteLocks test in SortedListPerformanceTest.java. Compare its
performance to the locking and synchronized versions using testSynchronized and testCoarseGrainedLocking.
Is there any change? Do you expect any difference? Note that we are only running local tests at the
moment, so small variations in performance are expected.

6 Testing on NOTS

Now that we have implementations of a concurrent list using synchronized, locks, and read-write locks we
will test their performance on the NOTS cluster to measure the actual performance of each implementation
without interference on your laptop.

To do so, you can either use the provided myjob.slurm file or upload to the autograder. As usual, when
using the myjob.slurm file please open it to fix any TODO items. If you use the autograder, focus on:

1. Comparing the performance achieved by synchronized, coarse-grain locking, and read-write locks be-
tween the two panes called “Performance Tests (1 core)” and “Performance Tests (8 cores)”. How does
performance change for each when only using 1 core or 8 cores?

2. The speedup achieved in the testSpanningTreeThreads test at the bottom of the “Performance Tests
(8 cores)” pane.

7 Turning in your lab work

For lab 9, you will need to turn in your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab. In particular, the TAs will want
to see the output of testSynchronized, testCoarseGrainedLocking, and testReadWriteLocks, and
testSpanningTreeThreads running on NOTS through either the autograder or the provided SLURM
script.

2. Commit your work to your lab 9 turnin folder. Check that all the work for today’s lab is in your
lab 9 directory by opening https://svn.rice.edu/r/comp322/turnin/S17/NETID/lab 9/ in your
web browser and checking that your changes have appeared.

3 of 3


	Conversion to Java threads: Spanning Tree
	Programming Tips and Pitfalls for Java Threads
	Sorted Linked List Example using Java's Synchronized Methods
	Use of Coarse-Grained Locking instead of Java's Synchronized Methods
	Use of Read-Write Locks
	Testing on NOTS
	Turning in your lab work 

