
Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University

{vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 4 18 January 2017

COMP 322: Fundamentals of
Parallel Programming

Lecture 4: Parallel Speedup
and Amdahl's Law

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

One Possible Solution to Worksheet 3
(Multiprocessor Scheduling)

2

• As before, WORK = 26 and CPL = 11 for this graph
• T2 = 15, for the 2-processor schedule on the right
• We can also see that

 max(CPL,WORK/2) <= T2 < CPL + WORK/2

1

1

1

4 41

1 1 1

31

1

1

1

1

1

1

1

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

Start%time! Proc%1! Proc%2!

0! A% !

1! B% !

2! C% N%

3! D% N%

4! D% N%

5! D% N%

6! D% O%

7! I% Q%

8! J% R%

9! L% R%

10! K% R%

11! M% E%

12% F% P%

13% G% !

14% H% !

15% ! !

There are
4 idle
slots in
this
schedule
— can we
do better
than T2 =
15 ?

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

Parallel Speedup

• Define Speedup(P) = T1 / TP
—Factor by which the use of P processors speeds up execution time

relative to 1 processor, for a fixed input size
—For ideal executions without overhead, 1 <= Speedup(P) <= P

—This is what you will see with abstract metrics, but these
bounds may not hold when we start measuring real execution
times with real overheads

—Linear speedup
– When Speedup(P) = k*P, for some constant k, 0 < k < 1

• Ideal Parallelism = WORK / CPL = T1 / T∞

= Parallel Speedup on an unbounded (infinite) number of processors

3

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

Computation Graph for Recursive Tree
approach to computing Array Sum in parallel

4

Assume input array size = S is a power of 2, and each add takes 1 unit of time:
• WORK(G) = S-1, and CPL(G) = log2(S)
• Define T(S,P) = parallel execution time for Array Sum with size S on P processors
• Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate
• T(S,P) = WORK(G)/P + CPL(G) = (S-1)/P + log2(S)

• ⇒ Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

How many processors should we use?
• Define Efficiency(P) = Speedup(P)/ P = T1/(P * TP)

— Processor efficiency --- figure of merit that indicates how well a parallel
program uses available processors

— For ideal executions without overhead, 1/P <= Efficiency(P) <= 1
— Efficiency(P) = 1 (100%) is the best we can hope for.

• Half-performance metric
— S1/2 = input size that achieves Efficiency(P) = 0.5 for a given P
— Figure of merit that indicates how large an input size is needed to obtain

efficient parallelism
— A larger value of S1/2 indicates that the problem is harder to parallelize

efficiently

• How many processors to use?
— Common goal: choose number of processors, P for a given input size, S,

so that efficiency is at least 0.5 (50%)

5

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

ArraySum: Speedup as function of array size, S,
and number of processors, P  

• Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))

• Asymptotically, Speedup(S,P) →S/log2S, as P → infinity

6

Number of processors, P (log scale)

Sp
ee

du
p(

S,
P)

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Speedup"(S=1024)" Speedup"(S=2048)"
Efficiency(P) ≤ 0.5,
for P ≥ 258
==> wasteful to use
more than 256
processors for S=2048

Efficiency(P) ≤ 0.5,
for P ≥ 128
==> wasteful to use
more than 128
processors for S=1024

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be executed sequentially

for a given input size S, then the best speedup that can be obtained for that program is
Speedup(S,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on parallel execution
time

— CPL >= q * T(S,1)
— T(S,P) >= q * T(S,1)
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in program can be
divided into sequential and parallel portions

— Sequential portion of WORK = q
– also denoted as fS (fraction of sequential work)

— Parallel portion of WORK = 1-q
– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into account

7

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

Illustration of Amdahl’s Law: 
Best Case Speedup as function of Parallel Portion

8

Figure source: http://en.wikipedia.org/wiki/Amdahl’s law

(log scale)

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

Functional Parallelism: Adding Return
Values to Async Tasks

Example Scenario (PseudoCode)
 // Parent task creates child async task

 future<Integer> container = async { return computeSum(X,low,mid); };

 . . .

 // Later, parent examines the return value

 int sum = container.get();

Two issues to be addressed:

1) Distinction between container and value in container (box)
2) Synchronization to avoid race condition in container accesses

9

Parent Task Child Task
container = async {...}
. . .
container.get()

computeSum(...)
return ...

return valuecontainer

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

Example: Two-way Parallel Array Sum  
using Future Tasks (PseudoCode)

1. // Parent Task T1 (main program)
2. // Compute sum1 (lower half) & sum2 (upper half) in parallel

3. future<Integer> sum1 = async { // Future Task T2

4. int sum = 0;

5. for(int i = 0; i < X.length / 2; i++) sum += X[i];

6. return sum;

7. };

8. future<Integer> sum2 = async { // Future Task T3

9. int sum = 0;

10. for(int i = X.length / 2; i < X.length; i++) sum += X[i];

11. return sum;

12. };

13. // Task T1 waits for Tasks T2 and T3 to complete

14. int total = sum1.get() + sum2.get();

10

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

Future Task Declarations and Uses

• Variable of type future is a reference to a future object
—Container for return value from future task

—The reference to the container is also known as a
“handle”

• Two operations that can be performed on variable V of type
future:

— Assignment: V can be assigned value of type future

— Blocking read: V.get() waits until the future task referred
to by V has completed, and then propagates the return
value
—Supports waiting on selected tasks, in contrast to

finish which waits on all tasks in scope

11

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

Announcements & Reminders
• IMPORTANT:

—Watch video & read handout for topic 2.1 for next lecture on Friday, Jan
20th

• HW1 was posted on the course web site (http://comp322.rice.edu) on Jan
11th, and is due on Jan 25th

• Quiz for Unit 1 (topics 1.1 - 1.5) is due by Jan 27th on Canvas

• See course web site for all work assignments and due dates
• Use Piazza (public or private posts, as appropriate) for all communications

re. COMP 322
• See Office Hours link on course web site for latest office hours schedule.

Group office hours are now scheduled during 3pm - 4pm on MWF in DH 3092
(default room but alternate room may need to be used on some days — an
announcement will be made in the lecture on those days)

12

