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One Possible Solution to Worksheet 3 
(Multiprocessor Scheduling)
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• As before, WORK = 26 and CPL = 11 for this graph 
• T2 = 15, for the 2-processor schedule on the right 
• We can also see that 

 max(CPL,WORK/2) <= T2 < CPL + WORK/2
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There are 
4 idle 
slots in 
this 
schedule 
— can we 
do better 
than T2 = 
15 ?
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Parallel Speedup

• Define Speedup(P) = T1 / TP 
—Factor by which the use of P processors speeds up execution time 

relative to 1 processor, for a fixed input size 
—For ideal executions without overhead, 1 <= Speedup(P) <= P 

—This is what you will see with abstract metrics, but these 
bounds may not hold when we start measuring real execution 
times with real overheads 

—Linear speedup  
– When Speedup(P) = k*P, for some constant k, 0 < k < 1 

• Ideal Parallelism  =  WORK / CPL  =  T1 / T∞ 

= Parallel Speedup on an unbounded (infinite) number of processors
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Computation Graph for Recursive Tree
approach to computing Array Sum in parallel
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Assume input array size = S is a power of 2, and each add takes 1 unit of time: 
• WORK(G) = S-1, and CPL(G) = log2(S) 
• Define T(S,P) = parallel execution time for Array Sum with size S on P processors 
• Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate 
• T(S,P) = WORK(G)/P + CPL(G) = (S-1)/P + log2(S) 

• ⇒   Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))
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How many processors should we use?
• Define Efficiency(P) = Speedup(P)/ P = T1/(P * TP) 

— Processor efficiency --- figure of merit that indicates how well a parallel 
program uses available processors 

— For ideal executions without overhead, 1/P <= Efficiency(P) <= 1 
— Efficiency(P) = 1 (100%) is the best we can hope for. 

• Half-performance metric 
— S1/2 = input size that achieves Efficiency(P) = 0.5 for a given P 
— Figure of merit that indicates how large an input size is needed to obtain 

efficient parallelism 
— A larger value of S1/2 indicates that the problem is harder to parallelize 

efficiently 

• How many processors to use? 
— Common goal: choose number of processors, P for a given input size, S, 

so that efficiency is at least 0.5 (50%)
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ArraySum: Speedup as function of array size, S,
and number of processors,  P  

• Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S)) 

• Asymptotically, Speedup(S,P) →S/log2S, as P → infinity
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Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be executed sequentially 

for a given input size S, then the best speedup that can be obtained for that program is 
Speedup(S,P) ≤ 1/q. 

• Observation follows directly from critical path length lower bound on parallel execution 
time 

—  CPL >= q * T(S,1) 
—  T(S,P) >= q * T(S,1)  
—  Speedup(S,P) = T(S,1)/T(S,P) <= 1/q 

• This upper bound on speedup simplistically assumes that work in program can be 
divided into sequential and parallel portions 

— Sequential portion of WORK = q 
– also denoted as fS (fraction of sequential work) 

— Parallel portion of WORK = 1-q 
– also denoted as fp (fraction of parallel work) 

• Computation graph is more general and takes dependences into account
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Illustration of Amdahl’s Law: 
Best Case Speedup as function of Parallel Portion
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Figure source: http://en.wikipedia.org/wiki/Amdahl’s law

(log scale)
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Functional Parallelism: Adding Return 
Values to Async Tasks

Example Scenario (PseudoCode) 
 // Parent task creates child async task

 future<Integer> container = async { return computeSum(X,low,mid); };

 . . .

 // Later, parent examines the return value

 int sum = container.get();

Two issues to be addressed: 

1) Distinction between container and value in container (box) 
2) Synchronization to avoid race condition in container accesses
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Parent Task Child Task
container = async {...} 
. . . 
container.get()

computeSum(...) 
return ...

return valuecontainer
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Example: Two-way Parallel Array Sum  
using Future Tasks (PseudoCode)

1. // Parent Task T1 (main program) 
2.  // Compute sum1 (lower half) & sum2 (upper half) in parallel 

3. future<Integer> sum1 = async { // Future Task T2 

4.     int sum = 0;  

5.     for(int i = 0; i < X.length / 2; i++) sum += X[i]; 

6.     return sum; 

7. };  

8. future<Integer> sum2 = async { // Future Task T3 

9.   int sum = 0;  

10.  for(int i = X.length / 2; i < X.length; i++) sum += X[i]; 

11.  return sum; 

12. };  

13. // Task T1 waits for Tasks T2 and T3 to complete 

14. int total = sum1.get() + sum2.get();
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Future Task Declarations and Uses

• Variable of type future is a reference to a future object 
—Container for return value from future task 

—The reference to the container is also known as a 
“handle”  

• Two operations that can be performed on variable V of type 
future: 

— Assignment: V can be assigned value of type future 

— Blocking read: V.get() waits until the future task referred 
to by V has completed, and then propagates the return 
value 
—Supports waiting on selected tasks, in contrast to 

finish which waits on all tasks in scope
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Announcements & Reminders
• IMPORTANT:  

—Watch video & read handout for topic 2.1 for next lecture on Friday, Jan 
20th 

• HW1 was posted on the course web site (http://comp322.rice.edu) on Jan 
11th, and is due on Jan 25th 

• Quiz for Unit 1 (topics 1.1 - 1.5) is due by Jan 27th on Canvas 

• See course web site for all work assignments and due dates 
• Use Piazza (public or private posts, as appropriate) for all communications 

re. COMP 322 
• See Office Hours link on course web site for latest office hours schedule.  

Group office hours are now scheduled during 3pm - 4pm on MWF in DH 3092 
(default room but alternate room may need to be used on some days — an 
announcement will be made in the lecture on those days)
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