COMP 322: Fundamentals of
Parallel Programming

Lecture 21: Read-Write Isolation,
Review of Phasers

Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University
{vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu/

COMP 322 Lecture 21 3 March 2017

Worksheet #20 solution:
Parallel Spanning Tree Algorithm

1. Insert finish, async, and isolated constructs (pseudocode is fine)
to convert the sequential spanning tree algorithm below into a
parallel algorithm

See slide 3, as well as the isolatedWithReturn() APT in slide 4 for
convenience in implementing the pseudocode.

2. Is it better to use a global isolated or an object-based isolated
construct for the parallelization in question 1? If object-based is
better, which object(s) should be included in the isolated list?

Object-based isolation should be better with a singleton object list
containing the “this” object for the makeParent() method.

2 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) %\d

l6.

17

18.
19.
20.

Parallel Spanning Tree Algorithm using
object-based isolated construct

class V {
V [] neighbors; // adjacency list for input graph
V parent; // output value of parent in spanning tree
boolean makeParent (final V n) {
return isolatedWithReturn(this, () -> {

if (parent == null) { parent = n; return true; }
else return false; // return true if n became parent
})i
} // makeParent
void compute() {
for (int 1i=0; i<neighbors.length; i++) {
final V child = neighbors[i];
if (child.makeParent (this))
async(() -> { child.compute(); });
}
} // compute
.} // class V
root.parent = root; // Use self-cycle to identify root
finish(() -> { root.compute(); });

3 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

HJ isolatedWithReturn construct

Il <body> must contain return statement
isolatedWithReturn (obj1, obj2, ..., () -> <body>);

Motivation: isolated() construct cannot modify local variables due to
restrictions imposed by Java 8 lambdas

« Workaround 1: use isolated() and modify objects rather than local
variables

— Pro: code can be easier to understand than modifying local variables
— Con: source of errors if multiple tasks read/write same object

« Workaround 2: use isolatedWithReturn()
—Pro: cleaner than modifying local variables

—Con: can only return one value

4 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) p/@*»q

java.util.concurrent.Atomicinteger methods and their
equivalent object-based isolated constructs (Lecture 20)

j.u.c.atomic Class
and Constructors j.u.c.atomic Methods Equivalent HJ isolated statements
AtomicInteger int j = v.get(); int j; isolated (v) j = v.val;

v.set(newVal); isolated (v) v.val = newVal;
AtomicInteger() int j = v.getAndSet(newVal); | int j; isolated (v) { j = v.val; v.val = newVal; }

// init = 0 int j = v.addAndGet(delta); | isolated (v) { v.val += delta; j = v.val; }

int j = v.getAndAdd(delta); | isolated (v) { j = v.val; v.val += delta; }

AtomicInteger(init) || boolean b = boolean b;
v.compareAndSet isolated (V)
(expect,update); if (v.val==expect) {v.val=update; b=true;}
else b = false;

Methods in java.util.concurrent.Atomiclnteger class and their
equivalent HJ isolated statements. Variable v refers to an
Atomicinteger object in column 2 and to a standard non-atomic Java
object in column 3. val refers to a field of type int.

5 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) @

Atomic Variables represent a special (and
more efficient) case of Object-based isolation

1. class VvV {

2. V [] neighbors; // adjacency list for input graph

3. AtomicReference<V> parent; // output value of parent in spanning tree
4. boolean makeParent(final V n) {

5. // compareAndSet() is a more efficient implementation of
6. // object-based isolation

7. return parent.compareAndSet(null, n);

8. } // makeParent

9. void compute() {

10. for (int i=0; i<neighbors.length; i++) {

11. final V child = neighbors[i];

12. if (child.makeParent(this))

13. async(() -> { child.compute(); }); // escaping async
14. }

15. } // compute

16.} // class V

17. .

18. root.parent = root; // Use self-cycle to identify root
19. finish(() -> { root.compute(); });

6 COMP 322, Spring 2016 (V. Sarkar, S. Imam) 2D

Motivation for Read-Write Object-based
isolation

Sorted List example
1. public boolean contains(Object object) {

2. // Observation: multiple calls to contains() should not
3. // interfere with each other

4. return isolatedWithReturn(this, () -> {

5. Entry pred, curr;

6. ‘e

7. return (key == curr.key);

8. 1

9. }

10.

11. public int add(Object object) {
12. return isolatedWithReturn(this, () -> {

13. Entry pred, curr;

14. e

15. if (...) return 1; else return 0;
16. 1});

17. }

7 COMP 322, Spring 2016 (V. Sarkar, S. Imam) 7>

Read-Write Object-based isolation in HJ

isolated(readMode (objl) ,writeMode(obj2), .., () -> <body>);

e Programmer specifies list of objects as well as their read-write modes for which isolation is
required

e Not specifying a mode is the same as specifying a write mode (default mode = read + write)

e Mutual exclusion is only guaranteed for instances of isolated statements that have a non-empty
intersection in their object lists such that one of the accesses is in writeMode

e Sorted List example

1. public boolean contains(Object object) ({

2. return isolatedWithReturn(readMode(this), () -> {
3. Entry pred, curr;

4.

5. return (key == curr.key);

6. 1});

7. }

8.

9. public int add(Object object) {

10. return isolatedWithReturn(writeMode(this), () -> {

11. Entry pred, curr;

12.

13. if (...) return 1; else return O;
14. 3);

15. }

8 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) &,

The world according to Module 1
without & with Phasers

e All the non-phaser parallel constructs that we learned focused on task creation
and termination

—async creates a task
— forasync creates a set of tasks specified by an iteration region
—finish waits for a set of tasks to terminate

— forall (like “finish forasync”) creates and waits for a set of tasks
specified by an iteration region

—future get() waits for a specific task to terminate
—asyncAwait() waits for a set of DataDrivenFuture values before starting

e Motivation for phasers
—Deterministic directed synchronization within tasks for barriers, point-to-
point synchronization, pipelining
—Separate from synchronization associated with task creation and
termination

—next operations are much more efficient than task creation/termination
(async/finish), but they only help reduce overhead if you perform multiple
next operations in a task

9 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) @

Pipeline Parallelism: Another Example of
Point-to-point Synchronization (Recap)

DENOISE ——| REGISTER —> SEGMENT

 Medical imaging pipeline with three stages
1. Denoising stage generates a sequence of results,
one per image.
2. Registration stage’s input is Denoising stage’s
output.

3. Segmentation stage’s input is Registration stage’s
output.

« Even though the processing is sequential for a single
image, pipeline parallelism can be exploited via point-
to-point synchronization between neighboring stages

10 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Implementation of Medical Imaging Pipeline

1. final List<PhaserPair> phListl = Arrays.asList(phO.inMode(PhaserMode.SIG));

2. final List<PhaserPair> phList2 = Arrays.asList(phO.inMode(PhaserMode.WAIT), phl.inMode(PhaserMode.SIG));
3. final List<PhaserPair> phList3 = Arrays.asList(phl.inMode(PhaserMode.WAIT));

4.

5. asyncPhased(phListl, () -> { // DENOISE stage

6. for (int i =0; i < n; i++) {

7. dowork (1) ;

8. signal(); // same as phO.signal(); as only phO is registered in this async
9. }

10. 1);

11.

12. asyncPhased(phList2, () -> { // REGISTER stage

13. for (int i =0; i < n; i++) {

14. phO.dowait(); // WARNING: Explicit calls to dowait() can lead to deadlock in general
15. dowork (1) ;

16. phl.signal(Q);

17. }

18. 1);

19.

20. asyncPhased(phList3, () -> { // SEGMENT stage

21. for (int i =0; 1 < n; i++) {

22. phl.dowait();

23. dowork (1) ;

24. }

25. 1);

11 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) p/@*»q

Announcements

« Reminder: Quiz for Unit 4 is due today

« Reminder: Checkpoint #2 for Homework 3 is due by
Wednesday, March 8th, and the entire homework is due by
March 22nd

 The registrar has announced the schedule for the COMP 322
final exam:

—2-MAY-2017
—9:00AM - 12:00PM
—Location TBD

« Scope of final exam (Exam 2) will be limited to Lectures 19 - 38

12 COMP 322, Spring 2016 (V. Sarkar, S. Imam) &

Serialized Computation Graph for
Isolated Constructs (Recap)

« Model each instance of an isolated construct as a distinct step (node) in the CG.

* Need to reason about the order in which interfering isolated constructs are executed

— Complicated because the order of isolated constructs may vary from execution
to execution

 Introduce Serialized Computation Graph (SCG) that includes a specific ordering of
all interfering isolated constructs.
— SCG consists of a CG with additional serialization edges.

— Each time an isolated step, S', is executed, we add a serialization edge from S to
S' for each prior “interfering” isolated step, S

- Two isolated constructs always interfere with each other

- Interference of “object-based isolated” constructs depends on intersection
of object sets

- Serialization edge is not needed if S and S’ are already ordered in CG

— An SCG represents a set of schedules in which all interfering isolated constructs
execute in the same order.

13 COMP 322, Spring 2016 (V. Sarkar, S. Imam) 7>

Example of Serialized Computation Graph with
Serialization Edges for v10-v16-v11 order (Recap)

Data race definition can be applied to Serialized Computation Graphs
(SCGs) just like regular CGs

—» Continue edge g Spawn edge ------ > Join edge

====> Serialization edge v10: isolated { x ++; y = 10; }

v11: isolated { x++; y=11;}

v16: isolated { x++; y=16;}

— Need to consider all possible orderings of interfering isolated
constructs to establish data race freedom

14 COMP 322, Spring 2016 (V. Sarkar, S. Imam) p@s

